#!/usr/bin/env python3 """ Crypto Data Aggregator - Admin Dashboard (Gradio App) STRICT REAL-DATA-ONLY implementation for Hugging Face Spaces 7 Tabs: 1. Status - System health & overview 2. Providers - API provider management 3. Market Data - Live cryptocurrency data 4. APL Scanner - Auto Provider Loader 5. HF Models - Hugging Face model status 6. Diagnostics - System diagnostics & auto-repair 7. Logs - System logs viewer """ import sys import os import logging from pathlib import Path from typing import Dict, List, Any, Tuple, Optional from datetime import datetime import json import traceback import asyncio import time # Check for Gradio try: import gradio as gr except ImportError: print("ERROR: gradio not installed. Run: pip install gradio") sys.exit(1) # Check for optional dependencies try: import pandas as pd PANDAS_AVAILABLE = True except ImportError: PANDAS_AVAILABLE = False print("WARNING: pandas not installed. Some features disabled.") try: import plotly.graph_objects as go from plotly.subplots import make_subplots PLOTLY_AVAILABLE = True except ImportError: PLOTLY_AVAILABLE = False print("WARNING: plotly not installed. Charts disabled.") # Import local modules import config import database import collectors # ==================== INDEPENDENT LOGGING SETUP ==================== # DO NOT use utils.setup_logging() - set up independently logger = logging.getLogger("app") if not logger.handlers: level_name = getattr(config, "LOG_LEVEL", "INFO") level = getattr(logging, level_name.upper(), logging.INFO) logger.setLevel(level) formatter = logging.Formatter( getattr(config, "LOG_FORMAT", "%(asctime)s - %(name)s - %(levelname)s - %(message)s") ) # Console handler ch = logging.StreamHandler() ch.setFormatter(formatter) logger.addHandler(ch) # File handler if log file exists try: if hasattr(config, 'LOG_FILE'): fh = logging.FileHandler(config.LOG_FILE) fh.setFormatter(formatter) logger.addHandler(fh) except Exception as e: print(f"Warning: Could not setup file logging: {e}") logger.info("=" * 60) logger.info("Crypto Admin Dashboard Starting") logger.info("=" * 60) # Initialize database db = database.get_database() # ==================== TAB 1: STATUS ==================== def get_status_tab() -> Tuple[str, str, str]: """ Get system status overview. Returns: (markdown_summary, db_stats_json, system_info_json) """ try: # Get database stats db_stats = db.get_database_stats() # Count providers providers_config_path = config.BASE_DIR / "providers_config_extended.json" provider_count = 0 if providers_config_path.exists(): with open(providers_config_path, 'r') as f: providers_data = json.load(f) provider_count = len(providers_data.get('providers', {})) # Pool count (from config) pool_count = 0 if providers_config_path.exists(): with open(providers_config_path, 'r') as f: providers_data = json.load(f) pool_count = len(providers_data.get('pool_configurations', [])) # Market snapshot latest_prices = db.get_latest_prices(3) market_snapshot = "" if latest_prices: for p in latest_prices[:3]: symbol = p.get('symbol', 'N/A') price = p.get('price_usd', 0) change = p.get('percent_change_24h', 0) market_snapshot += f"**{symbol}**: ${price:,.2f} ({change:+.2f}%)\n" else: market_snapshot = "No market data available yet." # Get API request count from health log api_requests_count = 0 try: health_log_path = Path("data/logs/provider_health.jsonl") if health_log_path.exists(): with open(health_log_path, 'r', encoding='utf-8') as f: api_requests_count = sum(1 for _ in f) except Exception as e: logger.warning(f"Could not get API request stats: {e}") # Build summary with copy-friendly format summary = f""" ## đŸŽ¯ System Status **Overall Health**: {"đŸŸĸ Operational" if db_stats.get('prices_count', 0) > 0 else "🟡 Initializing"} ### Quick Stats ``` Total Providers: {provider_count} Active Pools: {pool_count} API Requests: {api_requests_count:,} Price Records: {db_stats.get('prices_count', 0):,} News Articles: {db_stats.get('news_count', 0):,} Unique Symbols: {db_stats.get('unique_symbols', 0)} ``` ### Market Snapshot (Top 3) ``` {market_snapshot} ``` **Last Update**: `{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}` --- ### 📋 Provider Details (Copy-Friendly) ``` Total: {provider_count} providers Config File: providers_config_extended.json ``` """ # System info import platform system_info = { "Python Version": sys.version.split()[0], "Platform": platform.platform(), "Working Directory": str(config.BASE_DIR), "Database Size": f"{db_stats.get('database_size_mb', 0):.2f} MB", "Last Price Update": db_stats.get('latest_price_update', 'N/A'), "Last News Update": db_stats.get('latest_news_update', 'N/A') } return summary, json.dumps(db_stats, indent=2), json.dumps(system_info, indent=2) except Exception as e: logger.error(f"Error in get_status_tab: {e}\n{traceback.format_exc()}") return f"âš ī¸ Error loading status: {str(e)}", "{}", "{}" def run_diagnostics_from_status(auto_fix: bool) -> str: """Run diagnostics from status tab""" try: from backend.services.diagnostics_service import DiagnosticsService diagnostics = DiagnosticsService() # Run async in sync context loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) report = loop.run_until_complete(diagnostics.run_full_diagnostics(auto_fix=auto_fix)) loop.close() # Format output output = f""" # Diagnostics Report **Timestamp**: {report.timestamp} **Duration**: {report.duration_ms:.2f}ms ## Summary - **Total Issues**: {report.total_issues} - **Critical**: {report.critical_issues} - **Warnings**: {report.warnings} - **Info**: {report.info_issues} - **Fixed**: {len(report.fixed_issues)} ## Issues """ for issue in report.issues: emoji = {"critical": "🔴", "warning": "🟡", "info": "đŸ”ĩ"}.get(issue.severity, "âšĒ") fixed_mark = " ✅ FIXED" if issue.auto_fixed else "" output += f"\n### {emoji} [{issue.category.upper()}] {issue.title}{fixed_mark}\n" output += f"{issue.description}\n" if issue.fixable and not issue.auto_fixed: output += f"**Fix**: `{issue.fix_action}`\n" return output except Exception as e: logger.error(f"Error running diagnostics: {e}") return f"❌ Diagnostics failed: {str(e)}" # ==================== TAB 2: PROVIDERS ==================== def get_providers_table(category_filter: str = "All") -> Any: """ Get providers from providers_config_extended.json with enhanced formatting Returns: DataFrame or dict """ try: providers_path = config.BASE_DIR / "providers_config_extended.json" if not providers_path.exists(): if PANDAS_AVAILABLE: return pd.DataFrame({"Error": ["providers_config_extended.json not found"]}) return {"error": "providers_config_extended.json not found"} with open(providers_path, 'r') as f: data = json.load(f) providers = data.get('providers', {}) # Build table data with copy-friendly IDs table_data = [] for provider_id, provider_info in providers.items(): if category_filter != "All": if provider_info.get('category', '').lower() != category_filter.lower(): continue # Format auth status with emoji auth_status = "✅ Yes" if provider_info.get('requires_auth', False) else "❌ No" validation = "✅ Valid" if provider_info.get('validated', False) else "âŗ Pending" table_data.append({ "Provider ID": provider_id, "Name": provider_info.get('name', provider_id), "Category": provider_info.get('category', 'unknown'), "Type": provider_info.get('type', 'http_json'), "Base URL": provider_info.get('base_url', 'N/A'), "Auth Required": auth_status, "Priority": provider_info.get('priority', 'N/A'), "Status": validation }) if PANDAS_AVAILABLE: return pd.DataFrame(table_data) if table_data else pd.DataFrame({"Message": ["No providers found"]}) else: return {"providers": table_data} if table_data else {"error": "No providers found"} except Exception as e: logger.error(f"Error loading providers: {e}") if PANDAS_AVAILABLE: return pd.DataFrame({"Error": [str(e)]}) return {"error": str(e)} def reload_providers_config() -> Tuple[Any, str]: """Reload providers config and return updated table + message with stats""" try: # Count providers providers_path = config.BASE_DIR / "providers_config_extended.json" with open(providers_path, 'r') as f: data = json.load(f) total_providers = len(data.get('providers', {})) # Count by category categories = {} for provider_info in data.get('providers', {}).values(): cat = provider_info.get('category', 'unknown') categories[cat] = categories.get(cat, 0) + 1 # Force reload by re-reading file table = get_providers_table("All") # Build detailed message message = f"""✅ **Providers Reloaded Successfully!** **Total Providers**: `{total_providers}` **Reload Time**: `{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}` **By Category**: """ for cat, count in sorted(categories.items(), key=lambda x: x[1], reverse=True)[:10]: message += f"- {cat}: `{count}`\n" return table, message except Exception as e: logger.error(f"Error reloading providers: {e}") return get_providers_table("All"), f"❌ Reload failed: {str(e)}" def get_provider_categories() -> List[str]: """Get unique provider categories""" try: providers_path = config.BASE_DIR / "providers_config_extended.json" if not providers_path.exists(): return ["All"] with open(providers_path, 'r') as f: data = json.load(f) categories = set() for provider in data.get('providers', {}).values(): cat = provider.get('category', 'unknown') categories.add(cat) return ["All"] + sorted(list(categories)) except Exception as e: logger.error(f"Error getting categories: {e}") return ["All"] # ==================== TAB 3: MARKET DATA ==================== def get_market_data_table(search_filter: str = "") -> Any: """Get latest market data from database with enhanced formatting""" try: prices = db.get_latest_prices(100) if not prices: if PANDAS_AVAILABLE: return pd.DataFrame({"Message": ["No market data available. Click 'Refresh Prices' to collect data."]}) return {"error": "No data available"} # Filter if search provided filtered_prices = prices if search_filter: search_lower = search_filter.lower() filtered_prices = [ p for p in prices if search_lower in p.get('name', '').lower() or search_lower in p.get('symbol', '').lower() ] table_data = [] for p in filtered_prices: # Format change with emoji change = p.get('percent_change_24h', 0) change_emoji = "đŸŸĸ" if change > 0 else ("🔴" if change < 0 else "âšĒ") table_data.append({ "#": p.get('rank', 999), "Symbol": p.get('symbol', 'N/A'), "Name": p.get('name', 'Unknown'), "Price": f"${p.get('price_usd', 0):,.2f}" if p.get('price_usd') else "N/A", "24h Change": f"{change_emoji} {change:+.2f}%" if change is not None else "N/A", "Volume 24h": f"${p.get('volume_24h', 0):,.0f}" if p.get('volume_24h') else "N/A", "Market Cap": f"${p.get('market_cap', 0):,.0f}" if p.get('market_cap') else "N/A" }) if PANDAS_AVAILABLE: df = pd.DataFrame(table_data) return df.sort_values('#') if not df.empty else pd.DataFrame({"Message": ["No matching data"]}) else: return {"prices": table_data} except Exception as e: logger.error(f"Error getting market data: {e}") if PANDAS_AVAILABLE: return pd.DataFrame({"Error": [str(e)]}) return {"error": str(e)} def refresh_market_data() -> Tuple[Any, str]: """Refresh market data by collecting from APIs with detailed stats""" try: logger.info("Refreshing market data...") start_time = time.time() success, count = collectors.collect_price_data() duration = time.time() - start_time # Get database stats db_stats = db.get_database_stats() if success: message = f"""✅ **Market Data Refreshed Successfully!** **Collection Stats**: - New Records: `{count}` - Duration: `{duration:.2f}s` - Time: `{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}` **Database Stats**: - Total Price Records: `{db_stats.get('prices_count', 0):,}` - Unique Symbols: `{db_stats.get('unique_symbols', 0)}` - Last Update: `{db_stats.get('latest_price_update', 'N/A')}` """ else: message = f"""âš ī¸ **Collection completed with issues** - Records Collected: `{count}` - Duration: `{duration:.2f}s` - Check logs for details """ # Return updated table table = get_market_data_table("") return table, message except Exception as e: logger.error(f"Error refreshing market data: {e}") return get_market_data_table(""), f"❌ Refresh failed: {str(e)}" def plot_price_history(symbol: str, timeframe: str) -> Any: """Plot price history for a symbol""" if not PLOTLY_AVAILABLE: return None try: # Parse timeframe hours_map = {"24h": 24, "7d": 168, "30d": 720, "90d": 2160} hours = hours_map.get(timeframe, 168) # Get history history = db.get_price_history(symbol.upper(), hours) if not history or len(history) < 2: fig = go.Figure() fig.add_annotation( text=f"No historical data for {symbol}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig # Extract data timestamps = [datetime.fromisoformat(h['timestamp'].replace('Z', '+00:00')) if isinstance(h['timestamp'], str) else datetime.now() for h in history] prices = [h.get('price_usd', 0) for h in history] # Create plot fig = go.Figure() fig.add_trace(go.Scatter( x=timestamps, y=prices, mode='lines', name='Price', line=dict(color='#2962FF', width=2) )) fig.update_layout( title=f"{symbol} - {timeframe}", xaxis_title="Time", yaxis_title="Price (USD)", hovermode='x unified', height=400 ) return fig except Exception as e: logger.error(f"Error plotting price history: {e}") fig = go.Figure() fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False) return fig # ==================== TAB 4: APL SCANNER ==================== def run_apl_scan() -> str: """Run Auto Provider Loader scan""" try: logger.info("Running APL scan...") # Import APL import auto_provider_loader # Run scan apl = auto_provider_loader.AutoProviderLoader() # Run async in sync context loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete(apl.run()) loop.close() # Build summary stats = apl.stats output = f""" # APL Scan Complete **Timestamp**: {stats.timestamp} **Execution Time**: {stats.execution_time_sec:.2f}s ## HTTP Providers - **Candidates**: {stats.total_http_candidates} - **Valid**: {stats.http_valid} ✅ - **Invalid**: {stats.http_invalid} ❌ - **Conditional**: {stats.http_conditional} âš ī¸ ## HuggingFace Models - **Candidates**: {stats.total_hf_candidates} - **Valid**: {stats.hf_valid} ✅ - **Invalid**: {stats.hf_invalid} ❌ - **Conditional**: {stats.hf_conditional} âš ī¸ ## Total Active Providers **{stats.total_active_providers}** providers are now active. --- ✅ All valid providers have been integrated into `providers_config_extended.json`. See `PROVIDER_AUTO_DISCOVERY_REPORT.md` for full details. """ return output except Exception as e: logger.error(f"Error running APL: {e}\n{traceback.format_exc()}") return f"❌ APL scan failed: {str(e)}\n\nCheck logs for details." def get_apl_report() -> str: """Get last APL report""" try: report_path = config.BASE_DIR / "PROVIDER_AUTO_DISCOVERY_REPORT.md" if report_path.exists(): with open(report_path, 'r') as f: return f.read() else: return "No APL report found. Run a scan first." except Exception as e: logger.error(f"Error reading APL report: {e}") return f"Error reading report: {str(e)}" # ==================== TAB 5: HF MODELS ==================== def get_hf_models_status() -> Any: """Get HuggingFace models status with unified display""" try: import ai_models model_info = ai_models.get_model_info() # Build unified table - avoid duplicates table_data = [] seen_models = set() # First, add loaded models if model_info.get('models_initialized'): for model_name, loaded in model_info.get('loaded_models', {}).items(): if model_name not in seen_models: status = "✅ Loaded" if loaded else "❌ Failed" model_id = config.HUGGINGFACE_MODELS.get(model_name, 'N/A') table_data.append({ "Model Type": model_name, "Model ID": model_id, "Status": status, "Source": "config.py" }) seen_models.add(model_name) # Then add configured but not loaded models for model_type, model_id in config.HUGGINGFACE_MODELS.items(): if model_type not in seen_models: table_data.append({ "Model Type": model_type, "Model ID": model_id, "Status": "âŗ Not Loaded", "Source": "config.py" }) seen_models.add(model_type) # Add models from providers_config if any try: providers_path = config.BASE_DIR / "providers_config_extended.json" if providers_path.exists(): with open(providers_path, 'r') as f: providers_data = json.load(f) for provider_id, provider_info in providers_data.get('providers', {}).items(): if provider_info.get('category') == 'hf-model': model_name = provider_info.get('name', provider_id) if model_name not in seen_models: table_data.append({ "Model Type": model_name, "Model ID": provider_id, "Status": "📚 Registry", "Source": "providers_config" }) seen_models.add(model_name) except Exception as e: logger.warning(f"Could not load models from providers_config: {e}") if not table_data: table_data.append({ "Model Type": "No models", "Model ID": "N/A", "Status": "âš ī¸ None configured", "Source": "N/A" }) if PANDAS_AVAILABLE: return pd.DataFrame(table_data) else: return {"models": table_data} except Exception as e: logger.error(f"Error getting HF models status: {e}") if PANDAS_AVAILABLE: return pd.DataFrame({"Error": [str(e)]}) return {"error": str(e)} def test_hf_model(model_name: str, test_text: str) -> str: """Test a HuggingFace model with text""" try: if not test_text or not test_text.strip(): return "âš ī¸ Please enter test text" import ai_models if model_name in ["sentiment_twitter", "sentiment_financial", "sentiment"]: # Test sentiment analysis result = ai_models.analyze_sentiment(test_text) output = f""" ## Sentiment Analysis Result **Input**: {test_text} **Label**: {result.get('label', 'N/A')} **Score**: {result.get('score', 0):.4f} **Confidence**: {result.get('confidence', 0):.4f} **Details**: ```json {json.dumps(result.get('details', {}), indent=2)} ``` """ return output elif model_name == "summarization": # Test summarization summary = ai_models.summarize_text(test_text) output = f""" ## Summarization Result **Original** ({len(test_text)} chars): {test_text} **Summary** ({len(summary)} chars): {summary} """ return output else: return f"âš ī¸ Model '{model_name}' not recognized or not testable" except Exception as e: logger.error(f"Error testing HF model: {e}") return f"❌ Model test failed: {str(e)}" def initialize_hf_models() -> Tuple[Any, str]: """Initialize HuggingFace models""" try: import ai_models result = ai_models.initialize_models() if result.get('success'): message = f"✅ Models initialized successfully at {datetime.now().strftime('%H:%M:%S')}" else: message = f"âš ī¸ Model initialization completed with warnings: {result.get('status')}" # Return updated table table = get_hf_models_status() return table, message except Exception as e: logger.error(f"Error initializing HF models: {e}") return get_hf_models_status(), f"❌ Initialization failed: {str(e)}" # ==================== TAB 6: DIAGNOSTICS ==================== def run_full_diagnostics(auto_fix: bool) -> str: """Run full system diagnostics""" try: from backend.services.diagnostics_service import DiagnosticsService logger.info(f"Running diagnostics (auto_fix={auto_fix})...") diagnostics = DiagnosticsService() # Run async in sync context loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) report = loop.run_until_complete(diagnostics.run_full_diagnostics(auto_fix=auto_fix)) loop.close() # Format detailed output output = f""" # 🔧 System Diagnostics Report **Generated**: {report.timestamp} **Duration**: {report.duration_ms:.2f}ms --- ## 📊 Summary | Metric | Count | |--------|-------| | **Total Issues** | {report.total_issues} | | **Critical** 🔴 | {report.critical_issues} | | **Warnings** 🟡 | {report.warnings} | | **Info** đŸ”ĩ | {report.info_issues} | | **Auto-Fixed** ✅ | {len(report.fixed_issues)} | --- ## 🔍 Issues Detected """ if not report.issues: output += "✅ **No issues detected!** System is healthy.\n" else: # Group by category by_category = {} for issue in report.issues: cat = issue.category if cat not in by_category: by_category[cat] = [] by_category[cat].append(issue) for category, issues in sorted(by_category.items()): output += f"\n### {category.upper()}\n\n" for issue in issues: emoji = {"critical": "🔴", "warning": "🟡", "info": "đŸ”ĩ"}.get(issue.severity, "âšĒ") fixed_mark = " ✅ **AUTO-FIXED**" if issue.auto_fixed else "" output += f"**{emoji} {issue.title}**{fixed_mark}\n\n" output += f"{issue.description}\n\n" if issue.fixable and issue.fix_action and not issue.auto_fixed: output += f"💡 **Fix**: `{issue.fix_action}`\n\n" output += "---\n\n" # System info output += "\n## đŸ’ģ System Information\n\n" output += "```json\n" output += json.dumps(report.system_info, indent=2) output += "\n```\n" return output except Exception as e: logger.error(f"Error running diagnostics: {e}\n{traceback.format_exc()}") return f"❌ Diagnostics failed: {str(e)}\n\nCheck logs for details." # ==================== TAB 7: LOGS ==================== def get_logs(log_type: str = "recent", lines: int = 100) -> str: """Get system logs with copy-friendly format""" try: log_file = config.LOG_FILE if not log_file.exists(): return "âš ī¸ Log file not found" # Read log file with open(log_file, 'r') as f: all_lines = f.readlines() # Filter based on log_type if log_type == "errors": filtered_lines = [line for line in all_lines if 'ERROR' in line or 'CRITICAL' in line] elif log_type == "warnings": filtered_lines = [line for line in all_lines if 'WARNING' in line] else: # recent filtered_lines = all_lines # Get last N lines recent_lines = filtered_lines[-lines:] if len(filtered_lines) > lines else filtered_lines if not recent_lines: return f"â„šī¸ No {log_type} logs found" # Format output with line numbers for easy reference output = f"# 📋 {log_type.upper()} Logs (Last {len(recent_lines)} lines)\n\n" output += "**Quick Stats:**\n" output += f"- Total lines shown: `{len(recent_lines)}`\n" output += f"- Log file: `{log_file}`\n" output += f"- Type: `{log_type}`\n\n" output += "---\n\n" output += "```log\n" for i, line in enumerate(recent_lines, 1): output += f"{i:4d} | {line}" output += "\n```\n" output += "\n---\n" output += "💡 **Tip**: You can now copy individual lines or the entire log block\n" return output except Exception as e: logger.error(f"Error reading logs: {e}") return f"❌ Error reading logs: {str(e)}" def clear_logs() -> str: """Clear log file""" try: log_file = config.LOG_FILE if log_file.exists(): # Backup first backup_path = log_file.parent / f"{log_file.name}.backup.{int(datetime.now().timestamp())}" import shutil shutil.copy2(log_file, backup_path) # Clear with open(log_file, 'w') as f: f.write("") logger.info("Log file cleared") return f"✅ Logs cleared (backup saved to {backup_path.name})" else: return "âš ī¸ No log file to clear" except Exception as e: logger.error(f"Error clearing logs: {e}") return f"❌ Error clearing logs: {str(e)}" # ==================== GRADIO INTERFACE ==================== def build_interface(): """Build the complete Gradio Blocks interface""" with gr.Blocks(title="Crypto Admin Dashboard", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🚀 Crypto Data Aggregator - Admin Dashboard **Real-time cryptocurrency data aggregation and analysis platform** Features: Provider Management | Market Data | Auto Provider Loader | HF Models | System Diagnostics """) with gr.Tabs(): # ==================== TAB 1: STATUS ==================== with gr.Tab("📊 Status"): gr.Markdown("### System Status Overview") with gr.Row(): status_refresh_btn = gr.Button("🔄 Refresh Status", variant="primary") status_diag_btn = gr.Button("🔧 Run Quick Diagnostics") status_summary = gr.Markdown() with gr.Row(): with gr.Column(): gr.Markdown("#### Database Statistics") db_stats_json = gr.JSON() with gr.Column(): gr.Markdown("#### System Information") system_info_json = gr.JSON() diag_output = gr.Markdown() # Load initial status demo.load( fn=get_status_tab, outputs=[status_summary, db_stats_json, system_info_json] ) # Refresh button status_refresh_btn.click( fn=get_status_tab, outputs=[status_summary, db_stats_json, system_info_json] ) # Quick diagnostics status_diag_btn.click( fn=lambda: run_diagnostics_from_status(False), outputs=diag_output ) # ==================== TAB 2: PROVIDERS ==================== with gr.Tab("🔌 Providers"): gr.Markdown("### API Provider Management") with gr.Row(): provider_category = gr.Dropdown( label="Filter by Category", choices=get_provider_categories(), value="All" ) provider_reload_btn = gr.Button("🔄 Reload Providers", variant="primary") providers_table = gr.Dataframe( label="Providers", interactive=False, wrap=True ) if PANDAS_AVAILABLE else gr.JSON(label="Providers") provider_status = gr.Textbox(label="Status", interactive=False) # Load initial providers demo.load( fn=lambda: get_providers_table("All"), outputs=providers_table ) # Category filter provider_category.change( fn=get_providers_table, inputs=provider_category, outputs=providers_table ) # Reload button provider_reload_btn.click( fn=reload_providers_config, outputs=[providers_table, provider_status] ) # ==================== TAB 3: MARKET DATA ==================== with gr.Tab("📈 Market Data"): gr.Markdown("### Live Cryptocurrency Market Data") with gr.Row(): market_search = gr.Textbox( label="Search", placeholder="Search by name or symbol..." ) market_refresh_btn = gr.Button("🔄 Refresh Prices", variant="primary") market_table = gr.Dataframe( label="Market Data", interactive=False, wrap=True, height=400 ) if PANDAS_AVAILABLE else gr.JSON(label="Market Data") market_status = gr.Textbox(label="Status", interactive=False) # Price chart section if PLOTLY_AVAILABLE: gr.Markdown("#### Price History Chart") with gr.Row(): chart_symbol = gr.Textbox( label="Symbol", placeholder="BTC", value="BTC" ) chart_timeframe = gr.Dropdown( label="Timeframe", choices=["24h", "7d", "30d", "90d"], value="7d" ) chart_plot_btn = gr.Button("📊 Plot") price_chart = gr.Plot(label="Price History") chart_plot_btn.click( fn=plot_price_history, inputs=[chart_symbol, chart_timeframe], outputs=price_chart ) # Load initial data demo.load( fn=lambda: get_market_data_table(""), outputs=market_table ) # Search market_search.change( fn=get_market_data_table, inputs=market_search, outputs=market_table ) # Refresh market_refresh_btn.click( fn=refresh_market_data, outputs=[market_table, market_status] ) # ==================== TAB 4: APL SCANNER ==================== with gr.Tab("🔍 APL Scanner"): gr.Markdown("### Auto Provider Loader") gr.Markdown("Automatically discover, validate, and integrate API providers and HuggingFace models.") with gr.Row(): apl_scan_btn = gr.Button("â–ļī¸ Run APL Scan", variant="primary", size="lg") apl_report_btn = gr.Button("📄 View Last Report") apl_output = gr.Markdown() apl_scan_btn.click( fn=run_apl_scan, outputs=apl_output ) apl_report_btn.click( fn=get_apl_report, outputs=apl_output ) # Load last report on startup demo.load( fn=get_apl_report, outputs=apl_output ) # ==================== TAB 5: HF MODELS ==================== with gr.Tab("🤖 HF Models"): gr.Markdown("### HuggingFace Models Status & Testing") with gr.Row(): hf_init_btn = gr.Button("🔄 Initialize Models", variant="primary") hf_refresh_btn = gr.Button("🔄 Refresh Status") hf_models_table = gr.Dataframe( label="Models", interactive=False ) if PANDAS_AVAILABLE else gr.JSON(label="Models") hf_status = gr.Textbox(label="Status", interactive=False) gr.Markdown("#### Test Model") with gr.Row(): test_model_dropdown = gr.Dropdown( label="Model", choices=["sentiment", "sentiment_twitter", "sentiment_financial", "summarization"], value="sentiment" ) test_input = gr.Textbox( label="Test Input", placeholder="Enter text to test the model...", lines=3 ) test_btn = gr.Button("â–ļī¸ Run Test", variant="secondary") test_output = gr.Markdown(label="Test Output") # Load initial status demo.load( fn=get_hf_models_status, outputs=hf_models_table ) # Initialize models hf_init_btn.click( fn=initialize_hf_models, outputs=[hf_models_table, hf_status] ) # Refresh status hf_refresh_btn.click( fn=get_hf_models_status, outputs=hf_models_table ) # Test model test_btn.click( fn=test_hf_model, inputs=[test_model_dropdown, test_input], outputs=test_output ) # ==================== TAB 6: DIAGNOSTICS ==================== with gr.Tab("🔧 Diagnostics"): gr.Markdown("### System Diagnostics & Auto-Repair") with gr.Row(): diag_run_btn = gr.Button("â–ļī¸ Run Diagnostics", variant="primary") diag_autofix_btn = gr.Button("🔧 Run with Auto-Fix", variant="secondary") diagnostics_output = gr.Markdown() diag_run_btn.click( fn=lambda: run_full_diagnostics(False), outputs=diagnostics_output ) diag_autofix_btn.click( fn=lambda: run_full_diagnostics(True), outputs=diagnostics_output ) # ==================== TAB 7: LOGS ==================== with gr.Tab("📋 Logs"): gr.Markdown("### System Logs Viewer") with gr.Row(): log_type = gr.Dropdown( label="Log Type", choices=["recent", "errors", "warnings"], value="recent" ) log_lines = gr.Slider( label="Lines to Show", minimum=10, maximum=500, value=100, step=10 ) with gr.Row(): log_refresh_btn = gr.Button("🔄 Refresh Logs", variant="primary") log_clear_btn = gr.Button("đŸ—‘ī¸ Clear Logs", variant="secondary") logs_output = gr.Markdown() log_clear_status = gr.Textbox(label="Status", interactive=False, visible=False) # Load initial logs demo.load( fn=lambda: get_logs("recent", 100), outputs=logs_output ) # Refresh logs log_refresh_btn.click( fn=get_logs, inputs=[log_type, log_lines], outputs=logs_output ) # Update when dropdown changes log_type.change( fn=get_logs, inputs=[log_type, log_lines], outputs=logs_output ) # Clear logs log_clear_btn.click( fn=clear_logs, outputs=log_clear_status ).then( fn=lambda: get_logs("recent", 100), outputs=logs_output ) # Footer gr.Markdown(""" --- **Crypto Data Aggregator Admin Dashboard** | Real Data Only | No Mock/Fake Data """) return demo # ==================== MAIN ENTRY POINT ==================== demo = build_interface() if __name__ == "__main__": logger.info("Launching Gradio dashboard...") # Try to mount FastAPI app for API endpoints try: from fastapi import FastAPI as FastAPIApp from fastapi.middleware.wsgi import WSGIMiddleware import uvicorn from threading import Thread import time # Import the FastAPI app from hf_unified_server try: from hf_unified_server import app as fastapi_app logger.info("✅ FastAPI app imported successfully") # Start FastAPI server in a separate thread on port 7861 def run_fastapi(): uvicorn.run( fastapi_app, host="0.0.0.0", port=7861, log_level="info" ) fastapi_thread = Thread(target=run_fastapi, daemon=True) fastapi_thread.start() time.sleep(2) # Give FastAPI time to start logger.info("✅ FastAPI server started on port 7861") except ImportError as e: logger.warning(f"âš ī¸ Could not import FastAPI app: {e}") except Exception as e: logger.warning(f"âš ī¸ Could not start FastAPI server: {e}") demo.launch( server_name="0.0.0.0", server_port=7860, share=False )