from __future__ import annotations from typing import List, Dict, Any import os from functools import lru_cache ENABLE_SENTIMENT = os.getenv("ENABLE_SENTIMENT", "true").lower() in ("1","true","yes") SOCIAL_MODEL = os.getenv("SENTIMENT_SOCIAL_MODEL", "ElKulako/cryptobert") NEWS_MODEL = os.getenv("SENTIMENT_NEWS_MODEL", "kk08/CryptoBERT") @lru_cache(maxsize=4) def _pl(model_name: str): if not ENABLE_SENTIMENT: return None from transformers import pipeline return pipeline("sentiment-analysis", model=model_name) def _label_to_score(lbl: str) -> float: l = (lbl or "").lower() if "bear" in l or "neg" in l or "label_0" in l: return -1.0 if "bull" in l or "pos" in l or "label_1" in l: return 1.0 return 0.0 def run_sentiment(texts: List[str], model: str | None = None) -> Dict[str, Any]: if not ENABLE_SENTIMENT: return {"enabled": False, "vote": 0.0, "samples": []} name = model or SOCIAL_MODEL pl = _pl(name) if not pl: return {"enabled": False, "vote": 0.0, "samples": []} preds = pl(texts) scores = [_label_to_score(p.get("label","")) * float(p.get("score",0)) for p in preds] vote = sum(scores) / max(1, len(scores)) return {"enabled": True, "model": name, "vote": vote, "samples": preds}