Update app.py
Browse files
app.py
CHANGED
|
@@ -1,793 +1,348 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import os
|
| 4 |
-
import pandas as pd
|
| 5 |
import json
|
| 6 |
from typing import List, Dict, Optional
|
| 7 |
import time
|
| 8 |
-
from datetime import datetime
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
# Text Generation Models - HF Inference API
|
| 13 |
-
"microsoft/DialoGPT-medium": {
|
| 14 |
-
"provider": "HF Inference",
|
| 15 |
-
"pipeline": "text-generation",
|
| 16 |
-
"description": "Conversational AI model for dialog generation",
|
| 17 |
-
"endpoint": "https://api-inference.huggingface.co/models/microsoft/DialoGPT-medium",
|
| 18 |
-
"api_format": "hf_inference"
|
| 19 |
-
},
|
| 20 |
-
"meta-llama/Llama-3.1-8B-Instruct": {
|
| 21 |
-
"provider": "HF Inference",
|
| 22 |
-
"pipeline": "text-generation",
|
| 23 |
-
"description": "Meta's Llama 3.1 8B Instruct model",
|
| 24 |
-
"endpoint": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.1-8B-Instruct",
|
| 25 |
-
"api_format": "hf_inference"
|
| 26 |
-
},
|
| 27 |
-
"deepseek-ai/DeepSeek-V3-0324": {
|
| 28 |
-
"provider": "HF Inference",
|
| 29 |
-
"pipeline": "text-generation",
|
| 30 |
-
"description": "DeepSeek V3 state-of-the-art conversational model",
|
| 31 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
| 32 |
-
"api_format": "openai_compatible"
|
| 33 |
-
},
|
| 34 |
-
|
| 35 |
-
# Cerebras Models (Chat completion LLM only)
|
| 36 |
"meta-llama/Llama-3.3-70B-Instruct": {
|
| 37 |
"provider": "Cerebras",
|
| 38 |
-
"
|
| 39 |
-
"description": "Meta's
|
| 40 |
-
"
|
| 41 |
-
"
|
| 42 |
-
},
|
| 43 |
-
|
| 44 |
-
# Cohere Models (Chat completion LLM + VLM)
|
| 45 |
-
"cohere/command-r-plus": {
|
| 46 |
-
"provider": "Cohere",
|
| 47 |
-
"pipeline": "text-generation",
|
| 48 |
-
"description": "Cohere's Command R+ enterprise-grade NLP model",
|
| 49 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
| 50 |
-
"api_format": "openai_compatible"
|
| 51 |
-
},
|
| 52 |
-
|
| 53 |
-
# Fal AI Models (Text-to-Image, Text-to-Video, Speech-to-Text)
|
| 54 |
-
"black-forest-labs/FLUX.1-schnell": {
|
| 55 |
-
"provider": "Fal AI",
|
| 56 |
-
"pipeline": "text-to-image",
|
| 57 |
-
"description": "FLUX.1 schnell model for fast image generation via Fal AI",
|
| 58 |
-
"endpoint": "https://router.huggingface.co/v1/text-to-image",
|
| 59 |
-
"api_format": "hf_router"
|
| 60 |
},
|
| 61 |
-
|
| 62 |
-
# Featherless AI Models (Chat completion LLM + VLM)
|
| 63 |
-
"meta-llama/Llama-3.1-70B-Instruct": {
|
| 64 |
-
"provider": "Featherless AI",
|
| 65 |
-
"pipeline": "text-generation",
|
| 66 |
-
"description": "Meta's Llama 3.1 70B Instruct via Featherless AI",
|
| 67 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
| 68 |
-
"api_format": "openai_compatible"
|
| 69 |
-
},
|
| 70 |
-
|
| 71 |
-
# Fireworks Models (Chat completion LLM + VLM)
|
| 72 |
-
"accounts/fireworks/models/llama-v3p1-8b-instruct": {
|
| 73 |
-
"provider": "Fireworks",
|
| 74 |
-
"pipeline": "text-generation",
|
| 75 |
-
"description": "Llama 3.1 8B Instruct via Fireworks AI production-ready serving",
|
| 76 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
| 77 |
-
"api_format": "openai_compatible"
|
| 78 |
-
},
|
| 79 |
-
|
| 80 |
-
# Groq Models (Chat completion LLM only)
|
| 81 |
"deepseek-ai/DeepSeek-R1": {
|
| 82 |
-
"provider": "Groq",
|
| 83 |
-
"
|
| 84 |
-
"description": "
|
| 85 |
-
"
|
| 86 |
-
"
|
| 87 |
-
},
|
| 88 |
-
|
| 89 |
-
# Hyperbolic Models (Chat completion LLM + VLM)
|
| 90 |
-
"meta-llama/Meta-Llama-3-8B-Instruct": {
|
| 91 |
-
"provider": "Hyperbolic",
|
| 92 |
-
"pipeline": "text-generation",
|
| 93 |
-
"description": "Meta's Llama 3 8B Instruct via Hyperbolic",
|
| 94 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
| 95 |
-
"api_format": "openai_compatible"
|
| 96 |
-
},
|
| 97 |
-
|
| 98 |
-
# Nebius Models (Chat completion LLM + VLM, Feature Extraction, Text-to-Image)
|
| 99 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
| 100 |
-
"provider": "Nebius",
|
| 101 |
-
"pipeline": "text-generation",
|
| 102 |
-
"description": "Mistral's Mixtral 8x7B Instruct via Nebius cloud platform",
|
| 103 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
| 104 |
-
"api_format": "openai_compatible"
|
| 105 |
-
},
|
| 106 |
-
|
| 107 |
-
# Novita Models (Chat completion LLM + VLM, Text-to-Video)
|
| 108 |
-
"Qwen/Qwen2.5-72B-Instruct": {
|
| 109 |
-
"provider": "Novita",
|
| 110 |
-
"pipeline": "text-generation",
|
| 111 |
-
"description": "Qwen 2.5 72B Instruct via Novita",
|
| 112 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
| 113 |
-
"api_format": "openai_compatible"
|
| 114 |
},
|
| 115 |
-
|
| 116 |
-
# Nscale Models (Chat completion LLM + VLM, Feature Extraction, Text-to-Image)
|
| 117 |
-
"microsoft/Phi-3-medium-4k-instruct": {
|
| 118 |
-
"provider": "Nscale",
|
| 119 |
-
"pipeline": "text-generation",
|
| 120 |
-
"description": "Microsoft Phi-3 Medium via Nscale",
|
| 121 |
-
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
| 122 |
-
"api_format": "openai_compatible"
|
| 123 |
-
},
|
| 124 |
-
|
| 125 |
-
# Replicate Models (Text-to-Image, Text-to-Video, Speech-to-Text)
|
| 126 |
-
"stabilityai/stable-diffusion-xl-base-1.0": {
|
| 127 |
-
"provider": "Replicate",
|
| 128 |
-
"pipeline": "text-to-image",
|
| 129 |
-
"description": "Stable Diffusion XL via Replicate cloud platform",
|
| 130 |
-
"endpoint": "https://router.huggingface.co/v1/text-to-image",
|
| 131 |
-
"api_format": "hf_router"
|
| 132 |
-
},
|
| 133 |
-
|
| 134 |
-
# SambaNova Models (Chat completion LLM, Feature Extraction)
|
| 135 |
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
| 136 |
"provider": "SambaNova",
|
| 137 |
-
"
|
| 138 |
-
"description": "Meta's
|
| 139 |
-
"
|
| 140 |
-
"
|
| 141 |
},
|
| 142 |
-
|
| 143 |
-
# Together AI Models (Chat completion LLM + VLM, Text-to-Image)
|
| 144 |
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
| 145 |
"provider": "Together",
|
| 146 |
-
"
|
| 147 |
-
"description": "
|
| 148 |
-
"
|
| 149 |
-
"
|
| 150 |
-
},
|
| 151 |
-
|
| 152 |
-
# HF Inference - Additional Models for various tasks
|
| 153 |
-
"black-forest-labs/FLUX.1-dev": {
|
| 154 |
-
"provider": "HF Inference",
|
| 155 |
-
"pipeline": "text-to-image",
|
| 156 |
-
"description": "FLUX.1 development model for high-quality text-to-image generation",
|
| 157 |
-
"endpoint": "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev",
|
| 158 |
-
"api_format": "hf_inference"
|
| 159 |
-
},
|
| 160 |
-
"openai/whisper-large-v3": {
|
| 161 |
-
"provider": "HF Inference",
|
| 162 |
-
"pipeline": "automatic-speech-recognition",
|
| 163 |
-
"description": "Whisper Large V3 for speech recognition",
|
| 164 |
-
"endpoint": "https://api-inference.huggingface.co/models/openai/whisper-large-v3",
|
| 165 |
-
"api_format": "hf_inference"
|
| 166 |
-
},
|
| 167 |
-
"sentence-transformers/all-MiniLM-L6-v2": {
|
| 168 |
-
"provider": "HF Inference",
|
| 169 |
-
"pipeline": "feature-extraction",
|
| 170 |
-
"description": "Sentence transformer for embeddings and semantic search",
|
| 171 |
-
"endpoint": "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2",
|
| 172 |
-
"api_format": "hf_inference"
|
| 173 |
-
},
|
| 174 |
-
"cardiffnlp/twitter-roberta-base-sentiment-latest": {
|
| 175 |
-
"provider": "HF Inference",
|
| 176 |
-
"pipeline": "text-classification",
|
| 177 |
-
"description": "Sentiment analysis model trained on Twitter data",
|
| 178 |
-
"endpoint": "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment-latest",
|
| 179 |
-
"api_format": "hf_inference"
|
| 180 |
-
}
|
| 181 |
-
}
|
| 182 |
-
|
| 183 |
-
# Updated provider configuration for current HF Inference Providers ecosystem
|
| 184 |
-
PROVIDER_CONFIG = {
|
| 185 |
-
"HF Inference": {
|
| 186 |
-
"description": "HuggingFace's native serverless inference API",
|
| 187 |
-
"auth_header": "Authorization",
|
| 188 |
-
"auth_format": "Bearer {token}",
|
| 189 |
-
"env_var": "HF_TOKEN",
|
| 190 |
-
"base_url": "https://api-inference.huggingface.co",
|
| 191 |
-
"pricing": "Free tier + pay-per-use",
|
| 192 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/hf-inference",
|
| 193 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Feature Extraction", "Text to Image", "Speech to text"]
|
| 194 |
-
},
|
| 195 |
-
"Cerebras": {
|
| 196 |
-
"description": "Ultra-fast inference with Language Processing Units (LPUs)",
|
| 197 |
-
"auth_header": "Authorization",
|
| 198 |
-
"auth_format": "Bearer {token}",
|
| 199 |
-
"env_var": "HF_TOKEN",
|
| 200 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 201 |
-
"pricing": "Pay-per-token via HF routing",
|
| 202 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/cerebras",
|
| 203 |
-
"capabilities": ["Chat completion (LLM)"]
|
| 204 |
},
|
| 205 |
-
"
|
| 206 |
-
"
|
| 207 |
-
"
|
| 208 |
-
"
|
| 209 |
-
"
|
| 210 |
-
"
|
| 211 |
-
"pricing": "Pay-per-token via HF routing",
|
| 212 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/cohere",
|
| 213 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
| 214 |
-
},
|
| 215 |
-
"Fal AI": {
|
| 216 |
-
"description": "Fast and reliable model inference platform",
|
| 217 |
-
"auth_header": "Authorization",
|
| 218 |
-
"auth_format": "Bearer {token}",
|
| 219 |
-
"env_var": "HF_TOKEN",
|
| 220 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 221 |
-
"pricing": "Pay-per-token via HF routing",
|
| 222 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/fal-ai",
|
| 223 |
-
"capabilities": ["Text to Image", "Text to video", "Speech to text"]
|
| 224 |
-
},
|
| 225 |
-
"Featherless AI": {
|
| 226 |
-
"description": "Optimized inference for open-source models",
|
| 227 |
-
"auth_header": "Authorization",
|
| 228 |
-
"auth_format": "Bearer {token}",
|
| 229 |
-
"env_var": "HF_TOKEN",
|
| 230 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 231 |
-
"pricing": "Pay-per-token via HF routing",
|
| 232 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/featherless-ai",
|
| 233 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
| 234 |
-
},
|
| 235 |
-
"Fireworks": {
|
| 236 |
-
"description": "Production-ready inference with fast model serving",
|
| 237 |
-
"auth_header": "Authorization",
|
| 238 |
-
"auth_format": "Bearer {token}",
|
| 239 |
-
"env_var": "HF_TOKEN",
|
| 240 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 241 |
-
"pricing": "Pay-per-token via HF routing",
|
| 242 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/fireworks-ai",
|
| 243 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
| 244 |
-
},
|
| 245 |
-
"Groq": {
|
| 246 |
-
"description": "Fast inference with specialized hardware acceleration",
|
| 247 |
-
"auth_header": "Authorization",
|
| 248 |
-
"auth_format": "Bearer {token}",
|
| 249 |
-
"env_var": "HF_TOKEN",
|
| 250 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 251 |
-
"pricing": "Pay-per-token via HF routing",
|
| 252 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/groq",
|
| 253 |
-
"capabilities": ["Chat completion (LLM)"]
|
| 254 |
-
},
|
| 255 |
-
"Hyperbolic": {
|
| 256 |
-
"description": "GPU-accelerated inference platform",
|
| 257 |
-
"auth_header": "Authorization",
|
| 258 |
-
"auth_format": "Bearer {token}",
|
| 259 |
-
"env_var": "HF_TOKEN",
|
| 260 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 261 |
-
"pricing": "Pay-per-token via HF routing",
|
| 262 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/hyperbolic",
|
| 263 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
| 264 |
-
},
|
| 265 |
-
"Nebius": {
|
| 266 |
-
"description": "Cloud-based AI infrastructure platform",
|
| 267 |
-
"auth_header": "Authorization",
|
| 268 |
-
"auth_format": "Bearer {token}",
|
| 269 |
-
"env_var": "HF_TOKEN",
|
| 270 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 271 |
-
"pricing": "Pay-per-token via HF routing",
|
| 272 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/nebius",
|
| 273 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Feature Extraction", "Text to Image"]
|
| 274 |
-
},
|
| 275 |
-
"Novita": {
|
| 276 |
-
"description": "AI inference platform with video generation",
|
| 277 |
-
"auth_header": "Authorization",
|
| 278 |
-
"auth_format": "Bearer {token}",
|
| 279 |
-
"env_var": "HF_TOKEN",
|
| 280 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 281 |
-
"pricing": "Pay-per-token via HF routing",
|
| 282 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/novita",
|
| 283 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Text to video"]
|
| 284 |
-
},
|
| 285 |
-
"Nscale": {
|
| 286 |
-
"description": "Scalable AI model deployment platform",
|
| 287 |
-
"auth_header": "Authorization",
|
| 288 |
-
"auth_format": "Bearer {token}",
|
| 289 |
-
"env_var": "HF_TOKEN",
|
| 290 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 291 |
-
"pricing": "Pay-per-token via HF routing",
|
| 292 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/nscale",
|
| 293 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Feature Extraction", "Text to Image"]
|
| 294 |
-
},
|
| 295 |
-
"Replicate": {
|
| 296 |
-
"description": "Run models in the cloud with simple API",
|
| 297 |
-
"auth_header": "Authorization",
|
| 298 |
-
"auth_format": "Bearer {token}",
|
| 299 |
-
"env_var": "HF_TOKEN",
|
| 300 |
-
"base_url": "https://router.huggingface.co/v1",
|
| 301 |
-
"pricing": "Pay-per-token via HF routing",
|
| 302 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/replicate",
|
| 303 |
-
"capabilities": ["Text to Image", "Text to video", "Speech to text"]
|
| 304 |
},
|
| 305 |
-
"
|
| 306 |
-
"
|
| 307 |
-
"
|
| 308 |
-
"
|
| 309 |
-
"
|
| 310 |
-
"
|
| 311 |
-
"pricing": "Pay-per-token via HF routing",
|
| 312 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/sambanova",
|
| 313 |
-
"capabilities": ["Chat completion (LLM)", "Feature Extraction"]
|
| 314 |
},
|
| 315 |
-
"
|
| 316 |
-
"
|
| 317 |
-
"
|
| 318 |
-
"
|
| 319 |
-
"
|
| 320 |
-
"
|
| 321 |
-
"pricing": "Pay-per-token via HF routing",
|
| 322 |
-
"docs_url": "https://huggingface.co/docs/inference-providers/providers/together",
|
| 323 |
-
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Text to Image"]
|
| 324 |
}
|
| 325 |
}
|
| 326 |
|
| 327 |
-
class
|
| 328 |
def __init__(self):
|
| 329 |
-
self.allowed_models = ALLOWED_MODELS
|
| 330 |
-
self.provider_config = PROVIDER_CONFIG
|
| 331 |
self.hf_token = os.getenv("HF_TOKEN")
|
| 332 |
-
|
| 333 |
if not self.hf_token:
|
| 334 |
-
raise ValueError("HF_TOKEN environment variable is required
|
| 335 |
-
|
| 336 |
-
self.headers = {"Authorization": f"Bearer {self.hf_token}"}
|
| 337 |
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
provider = model_info["provider"]
|
| 343 |
-
|
| 344 |
-
models.append({
|
| 345 |
-
"model_id": model_id,
|
| 346 |
-
"provider": provider,
|
| 347 |
-
"pipeline": model_info["pipeline"],
|
| 348 |
-
"description": model_info["description"],
|
| 349 |
-
"endpoint": model_info["endpoint"],
|
| 350 |
-
"api_format": model_info["api_format"],
|
| 351 |
-
"status": self._check_model_status(model_id, provider),
|
| 352 |
-
"pricing": self.provider_config[provider]["pricing"]
|
| 353 |
-
})
|
| 354 |
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
"""Check if a specific model is currently available via HF Inference Providers"""
|
| 359 |
-
try:
|
| 360 |
-
# For models using the new HF Router API
|
| 361 |
-
if provider in ["Cerebras", "Groq", "Together", "Fireworks", "Replicate", "Cohere", "Fal AI"]:
|
| 362 |
-
# Use the models endpoint to check availability
|
| 363 |
-
url = "https://router.huggingface.co/v1/models"
|
| 364 |
-
response = requests.get(url, headers=self.headers, timeout=5)
|
| 365 |
-
|
| 366 |
-
if response.status_code == 200:
|
| 367 |
-
available_models = response.json()
|
| 368 |
-
if isinstance(available_models, dict) and "data" in available_models:
|
| 369 |
-
model_ids = [m["id"] for m in available_models["data"]]
|
| 370 |
-
return "✅ Available" if model_id in model_ids else "❓ Check Provider"
|
| 371 |
-
return "✅ Available"
|
| 372 |
-
else:
|
| 373 |
-
return "❓ Unknown"
|
| 374 |
-
|
| 375 |
-
# For traditional HF Inference API models
|
| 376 |
-
elif provider == "HF Inference":
|
| 377 |
-
url = f"https://api-inference.huggingface.co/models/{model_id}"
|
| 378 |
-
response = requests.get(url, headers=self.headers, timeout=5)
|
| 379 |
-
|
| 380 |
-
if response.status_code == 200:
|
| 381 |
-
return "✅ Available"
|
| 382 |
-
elif response.status_code == 503:
|
| 383 |
-
return "🔄 Loading"
|
| 384 |
-
else:
|
| 385 |
-
return "❌ Unavailable"
|
| 386 |
-
|
| 387 |
-
return "❓ Unknown"
|
| 388 |
-
|
| 389 |
-
except Exception:
|
| 390 |
-
return "❓ Connection Error"
|
| 391 |
-
|
| 392 |
-
def test_model_inference(self, model_id: str, input_text: str) -> Dict:
|
| 393 |
-
"""Test inference on a specific allowed model using current HF Inference Providers API"""
|
| 394 |
-
if model_id not in self.allowed_models:
|
| 395 |
return {
|
| 396 |
-
"
|
| 397 |
-
"error":
|
| 398 |
-
"response_time": None
|
| 399 |
}
|
| 400 |
|
| 401 |
-
model_info =
|
| 402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
try:
|
| 405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
|
| 407 |
-
if
|
| 408 |
-
|
| 409 |
-
result
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
else:
|
| 417 |
return {
|
| 418 |
-
"
|
| 419 |
-
"error": f"
|
| 420 |
-
"response_time": None
|
| 421 |
}
|
| 422 |
-
|
| 423 |
-
result["response_time"] = time.time() - start_time
|
| 424 |
-
return result
|
| 425 |
|
| 426 |
except Exception as e:
|
| 427 |
return {
|
| 428 |
-
"
|
| 429 |
-
"error": str(e)
|
| 430 |
-
"response_time": time.time() - start_time if 'start_time' in locals() else None
|
| 431 |
}
|
| 432 |
-
|
| 433 |
-
def _test_openai_compatible_model(self, model_id: str, input_text: str) -> Dict:
|
| 434 |
-
"""Test model using OpenAI-compatible chat completions API"""
|
| 435 |
-
url = "https://router.huggingface.co/v1/chat/completions"
|
| 436 |
-
|
| 437 |
-
payload = {
|
| 438 |
-
"model": model_id,
|
| 439 |
-
"messages": [
|
| 440 |
-
{"role": "user", "content": input_text}
|
| 441 |
-
],
|
| 442 |
-
"max_tokens": 100,
|
| 443 |
-
"temperature": 0.7
|
| 444 |
-
}
|
| 445 |
-
|
| 446 |
-
response = requests.post(url, headers=self.headers, json=payload, timeout=30)
|
| 447 |
-
|
| 448 |
-
if response.status_code == 200:
|
| 449 |
-
return {
|
| 450 |
-
"status": "success",
|
| 451 |
-
"result": response.json()
|
| 452 |
-
}
|
| 453 |
-
else:
|
| 454 |
-
return {
|
| 455 |
-
"status": "error",
|
| 456 |
-
"error": f"HTTP {response.status_code}: {response.text}"
|
| 457 |
-
}
|
| 458 |
-
|
| 459 |
-
def _test_hf_inference_model(self, model_id: str, input_text: str, model_info: Dict) -> Dict:
|
| 460 |
-
"""Test model using traditional HF Inference API"""
|
| 461 |
-
url = model_info["endpoint"]
|
| 462 |
-
|
| 463 |
-
# Adjust payload based on pipeline type
|
| 464 |
-
pipeline = model_info["pipeline"]
|
| 465 |
-
if pipeline in ["text-generation", "text2text-generation"]:
|
| 466 |
-
payload = {"inputs": input_text, "parameters": {"max_new_tokens": 100}}
|
| 467 |
-
elif pipeline == "text-to-image":
|
| 468 |
-
payload = {"inputs": input_text}
|
| 469 |
-
elif pipeline == "feature-extraction":
|
| 470 |
-
payload = {"inputs": input_text}
|
| 471 |
-
else:
|
| 472 |
-
payload = {"inputs": input_text}
|
| 473 |
-
|
| 474 |
-
response = requests.post(url, headers=self.headers, json=payload, timeout=30)
|
| 475 |
-
|
| 476 |
-
if response.status_code == 200:
|
| 477 |
-
return {
|
| 478 |
-
"status": "success",
|
| 479 |
-
"result": response.json()
|
| 480 |
-
}
|
| 481 |
-
else:
|
| 482 |
-
return {
|
| 483 |
-
"status": "error",
|
| 484 |
-
"error": f"HTTP {response.status_code}: {response.text}"
|
| 485 |
-
}
|
| 486 |
-
|
| 487 |
-
def _test_hf_router_model(self, model_id: str, input_text: str, model_info: Dict) -> Dict:
|
| 488 |
-
"""Test model using HF Router API for specialized tasks"""
|
| 489 |
-
pipeline = model_info["pipeline"]
|
| 490 |
-
|
| 491 |
-
if pipeline == "text-to-image":
|
| 492 |
-
# Use the text-to-image endpoint via HF Router
|
| 493 |
-
payload = {
|
| 494 |
-
"model": model_id,
|
| 495 |
-
"prompt": input_text,
|
| 496 |
-
"num_inference_steps": 20
|
| 497 |
-
}
|
| 498 |
-
# Note: This would need to be implemented based on actual HF Router text-to-image API
|
| 499 |
-
return {
|
| 500 |
-
"status": "info",
|
| 501 |
-
"result": "Text-to-image testing via HF Router not fully implemented in demo"
|
| 502 |
-
}
|
| 503 |
-
|
| 504 |
-
return {
|
| 505 |
-
"status": "error",
|
| 506 |
-
"error": f"HF Router testing not implemented for pipeline: {pipeline}"
|
| 507 |
-
}
|
| 508 |
|
| 509 |
-
def
|
| 510 |
try:
|
| 511 |
-
|
| 512 |
except ValueError as e:
|
| 513 |
-
# Create
|
| 514 |
-
with gr.Blocks(title="❌
|
| 515 |
gr.Markdown(f"""
|
| 516 |
-
# ❌
|
| 517 |
|
| 518 |
-
**
|
| 519 |
|
| 520 |
Please set the `HF_TOKEN` environment variable with your HuggingFace token.
|
| 521 |
|
| 522 |
-
|
| 523 |
""")
|
| 524 |
return demo
|
| 525 |
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
models = [m for m in models if m['provider'] == provider_filter]
|
| 532 |
-
|
| 533 |
-
if not models:
|
| 534 |
-
return "No models found for the selected provider"
|
| 535 |
-
|
| 536 |
-
df = pd.DataFrame(models)
|
| 537 |
-
return df
|
| 538 |
|
| 539 |
-
def
|
| 540 |
-
"""
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
|
| 552 |
-
def
|
| 553 |
-
"""
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
return
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
{
|
| 564 |
-
"""
|
| 565 |
-
|
| 566 |
-
if not test_input.strip():
|
| 567 |
-
test_input = "Hello, how are you today?"
|
| 568 |
-
|
| 569 |
-
result = explorer.test_model_inference(model_id, test_input)
|
| 570 |
-
|
| 571 |
-
model_info = explorer.allowed_models[model_id]
|
| 572 |
-
|
| 573 |
-
if result["status"] == "success":
|
| 574 |
-
return f"""
|
| 575 |
-
**Model:** {model_id}
|
| 576 |
-
**Provider:** {model_info['provider']}
|
| 577 |
-
**Pipeline:** {model_info['pipeline']}
|
| 578 |
-
**API Format:** {model_info['api_format']}
|
| 579 |
-
**Status:** ✅ Success
|
| 580 |
-
**Response Time:** {result['response_time']:.2f}s
|
| 581 |
-
|
| 582 |
-
**Result:**
|
| 583 |
-
```json
|
| 584 |
-
{json.dumps(result['result'], indent=2)}
|
| 585 |
-
```
|
| 586 |
-
"""
|
| 587 |
-
elif result["status"] == "info":
|
| 588 |
-
return f"""
|
| 589 |
-
**Model:** {model_id}
|
| 590 |
-
**Provider:** {model_info['provider']}
|
| 591 |
-
**Pipeline:** {model_info['pipeline']}
|
| 592 |
-
**Status:** ℹ️ Info
|
| 593 |
-
**Response Time:** {result['response_time']:.2f}s if result['response_time'] else 'N/A'
|
| 594 |
|
| 595 |
-
**
|
| 596 |
-
{
|
| 597 |
-
|
| 598 |
-
else:
|
| 599 |
-
return f"""
|
| 600 |
-
**Model:** {model_id}
|
| 601 |
-
**Provider:** {model_info['provider']}
|
| 602 |
-
**Pipeline:** {model_info['pipeline']}
|
| 603 |
-
**Status:** ❌ Error
|
| 604 |
-
**Response Time:** {result['response_time']:.2f}s if result['response_time'] else 'N/A'
|
| 605 |
|
| 606 |
-
|
| 607 |
-
{result['error']}
|
| 608 |
"""
|
| 609 |
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
|
|
|
|
|
|
| 626 |
|
| 627 |
-
return pd.DataFrame(status_info)
|
| 628 |
-
|
| 629 |
-
# Get unique providers and pipelines for filters
|
| 630 |
-
providers = ["All"] + list(set(model["provider"] for model in explorer.allowed_models.values()))
|
| 631 |
-
pipelines = ["All"] + list(set(model["pipeline"] for model in explorer.allowed_models.values()))
|
| 632 |
-
model_ids = list(explorer.allowed_models.keys())
|
| 633 |
-
|
| 634 |
-
# Create Gradio interface
|
| 635 |
-
with gr.Blocks(title="🤗 HuggingFace Inference Providers Explorer", theme=gr.themes.Soft()) as demo:
|
| 636 |
gr.Markdown("""
|
| 637 |
-
#
|
| 638 |
-
|
| 639 |
-
**Modern Inference Ecosystem**: Explore models from HuggingFace's unified inference providers platform!
|
| 640 |
|
| 641 |
-
|
| 642 |
-
- **HF Inference**: Native serverless inference API (free tier available)
|
| 643 |
-
- **Cerebras**: Ultra-fast LPU-powered inference
|
| 644 |
-
- **Groq**: Hardware-accelerated language processing
|
| 645 |
-
- **Together AI**: High-performance open-source models
|
| 646 |
-
- **Fireworks AI**: Production-ready model serving
|
| 647 |
-
- **Replicate**: Cloud-based model deployment
|
| 648 |
-
- **Cohere**: Enterprise NLP models
|
| 649 |
-
- **Fal AI**: Fast and reliable inference
|
| 650 |
|
| 651 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
|
| 653 |
-
---
|
| 654 |
""")
|
| 655 |
|
| 656 |
-
with gr.
|
| 657 |
-
#
|
| 658 |
-
with gr.
|
| 659 |
-
gr.Markdown("###
|
| 660 |
-
|
| 661 |
-
status_btn = gr.Button("📊 View Provider Details", variant="primary")
|
| 662 |
-
provider_status_output = gr.Dataframe(
|
| 663 |
-
headers=["Provider", "Description", "Capabilities", "Models", "Pricing", "Documentation"],
|
| 664 |
-
label="Provider Information"
|
| 665 |
-
)
|
| 666 |
-
|
| 667 |
-
status_btn.click(get_provider_status, outputs=provider_status_output)
|
| 668 |
-
|
| 669 |
-
# Models by Provider Tab
|
| 670 |
-
with gr.TabItem("🔍 Browse by Provider"):
|
| 671 |
-
gr.Markdown("### Models Available by Provider")
|
| 672 |
|
| 673 |
-
|
| 674 |
-
choices=
|
| 675 |
-
|
| 676 |
-
|
|
|
|
| 677 |
)
|
| 678 |
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
label="Models by Provider"
|
| 683 |
)
|
| 684 |
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
|
|
|
| 689 |
)
|
| 690 |
|
| 691 |
-
#
|
| 692 |
-
with gr.
|
| 693 |
-
gr.Markdown("###
|
| 694 |
-
|
| 695 |
-
pipeline_filter = gr.Dropdown(
|
| 696 |
-
choices=pipelines,
|
| 697 |
-
value="All",
|
| 698 |
-
label="Select Task/Pipeline"
|
| 699 |
-
)
|
| 700 |
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
|
|
|
|
|
|
| 705 |
)
|
| 706 |
|
| 707 |
-
pipeline_models_btn.click(
|
| 708 |
-
get_models_by_pipeline,
|
| 709 |
-
inputs=pipeline_filter,
|
| 710 |
-
outputs=pipeline_models_output
|
| 711 |
-
)
|
| 712 |
-
|
| 713 |
-
# Model Testing Tab
|
| 714 |
-
with gr.TabItem("🧪 Test Models"):
|
| 715 |
-
gr.Markdown("### Test Live Model Inference")
|
| 716 |
-
|
| 717 |
with gr.Row():
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
label="
|
| 721 |
-
|
|
|
|
| 722 |
)
|
| 723 |
-
|
| 724 |
-
placeholder="Hello, how are you today?",
|
| 725 |
-
label="Test Input",
|
| 726 |
-
info="Text to send to the model"
|
| 727 |
-
)
|
| 728 |
-
|
| 729 |
-
test_btn = gr.Button("🚀 Test Model", variant="primary")
|
| 730 |
-
test_output = gr.Markdown(label="Inference Results")
|
| 731 |
-
|
| 732 |
-
test_btn.click(
|
| 733 |
-
test_model,
|
| 734 |
-
inputs=[model_id_dropdown, test_input],
|
| 735 |
-
outputs=test_output
|
| 736 |
-
)
|
| 737 |
-
|
| 738 |
-
# All Models Tab
|
| 739 |
-
with gr.TabItem("📊 All Available Models"):
|
| 740 |
-
gr.Markdown("### Complete Model Catalog")
|
| 741 |
-
|
| 742 |
-
all_models_btn = gr.Button("📋 Load All Models", variant="primary")
|
| 743 |
-
all_models_output = gr.Dataframe(
|
| 744 |
-
headers=["Model ID", "Provider", "Pipeline", "Description", "API Format", "Status", "Pricing"],
|
| 745 |
-
label="Complete Model Catalog"
|
| 746 |
-
)
|
| 747 |
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 752 |
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 756 |
|
| 757 |
-
|
|
|
|
| 758 |
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
|
| 763 |
-
##
|
| 764 |
|
| 765 |
-
-
|
| 766 |
-
-
|
| 767 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 768 |
|
| 769 |
-
##
|
| 770 |
|
| 771 |
-
-
|
| 772 |
-
-
|
| 773 |
-
-
|
| 774 |
-
-
|
| 775 |
|
| 776 |
---
|
| 777 |
|
| 778 |
-
*Powered by HuggingFace Inference Providers
|
| 779 |
""")
|
| 780 |
|
| 781 |
return demo
|
| 782 |
|
| 783 |
if __name__ == "__main__":
|
| 784 |
try:
|
| 785 |
-
demo =
|
| 786 |
demo.launch(
|
| 787 |
server_name="0.0.0.0",
|
| 788 |
server_port=7860,
|
| 789 |
share=False
|
| 790 |
)
|
| 791 |
except Exception as e:
|
| 792 |
-
print(f"Error starting application: {e}")
|
| 793 |
print("Please ensure HF_TOKEN environment variable is set.")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import os
|
|
|
|
| 4 |
import json
|
| 5 |
from typing import List, Dict, Optional
|
| 6 |
import time
|
|
|
|
| 7 |
|
| 8 |
+
# Curated selection of advanced AI models for general users
|
| 9 |
+
ADVANCED_MODELS = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
"meta-llama/Llama-3.3-70B-Instruct": {
|
| 11 |
"provider": "Cerebras",
|
| 12 |
+
"display_name": "Llama 3.3 70B (Ultra Fast)",
|
| 13 |
+
"description": "Meta's latest and most capable model, optimized for speed",
|
| 14 |
+
"category": "General Purpose",
|
| 15 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"deepseek-ai/DeepSeek-R1": {
|
| 18 |
+
"provider": "Groq",
|
| 19 |
+
"display_name": "DeepSeek R1 (Reasoning)",
|
| 20 |
+
"description": "Advanced reasoning model for complex problem solving",
|
| 21 |
+
"category": "Reasoning & Analysis",
|
| 22 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
| 25 |
"provider": "SambaNova",
|
| 26 |
+
"display_name": "Llama 3.1 405B (Most Powerful)",
|
| 27 |
+
"description": "Meta's largest and most capable language model",
|
| 28 |
+
"category": "Expert Level",
|
| 29 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
| 30 |
},
|
|
|
|
|
|
|
| 31 |
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
| 32 |
"provider": "Together",
|
| 33 |
+
"display_name": "Llama 3 70B (Balanced)",
|
| 34 |
+
"description": "Excellent balance of capability and speed",
|
| 35 |
+
"category": "General Purpose",
|
| 36 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
},
|
| 38 |
+
"cohere/command-r-plus": {
|
| 39 |
+
"provider": "Cohere",
|
| 40 |
+
"display_name": "Command R+ (Enterprise)",
|
| 41 |
+
"description": "Enterprise-grade model for professional use",
|
| 42 |
+
"category": "Business & Professional",
|
| 43 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
},
|
| 45 |
+
"Qwen/Qwen2.5-72B-Instruct": {
|
| 46 |
+
"provider": "Novita",
|
| 47 |
+
"display_name": "Qwen 2.5 72B (Multilingual)",
|
| 48 |
+
"description": "Excellent for multiple languages and coding",
|
| 49 |
+
"category": "Multilingual & Code",
|
| 50 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
| 51 |
},
|
| 52 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
| 53 |
+
"provider": "Nebius",
|
| 54 |
+
"display_name": "Mixtral 8x7B (Efficient)",
|
| 55 |
+
"description": "Fast and efficient for everyday tasks",
|
| 56 |
+
"category": "Daily Tasks",
|
| 57 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions"
|
|
|
|
|
|
|
|
|
|
| 58 |
}
|
| 59 |
}
|
| 60 |
|
| 61 |
+
class AIChat:
|
| 62 |
def __init__(self):
|
|
|
|
|
|
|
| 63 |
self.hf_token = os.getenv("HF_TOKEN")
|
|
|
|
| 64 |
if not self.hf_token:
|
| 65 |
+
raise ValueError("HF_TOKEN environment variable is required")
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
self.headers = {
|
| 68 |
+
"Authorization": f"Bearer {self.hf_token}",
|
| 69 |
+
"Content-Type": "application/json"
|
| 70 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
def send_message(self, model_id: str, message: str, conversation_history: List = None) -> Dict:
|
| 73 |
+
"""Send a chat message to the selected AI model"""
|
| 74 |
+
if model_id not in ADVANCED_MODELS:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
return {
|
| 76 |
+
"success": False,
|
| 77 |
+
"error": "Selected model is not available"
|
|
|
|
| 78 |
}
|
| 79 |
|
| 80 |
+
model_info = ADVANCED_MODELS[model_id]
|
| 81 |
+
|
| 82 |
+
# Build conversation with history
|
| 83 |
+
messages = []
|
| 84 |
+
if conversation_history:
|
| 85 |
+
messages.extend(conversation_history)
|
| 86 |
+
messages.append({"role": "user", "content": message})
|
| 87 |
+
|
| 88 |
+
payload = {
|
| 89 |
+
"model": model_id,
|
| 90 |
+
"messages": messages,
|
| 91 |
+
"max_tokens": 1000,
|
| 92 |
+
"temperature": 0.7,
|
| 93 |
+
"stream": False
|
| 94 |
+
}
|
| 95 |
|
| 96 |
try:
|
| 97 |
+
response = requests.post(
|
| 98 |
+
model_info["endpoint"],
|
| 99 |
+
headers=self.headers,
|
| 100 |
+
json=payload,
|
| 101 |
+
timeout=60
|
| 102 |
+
)
|
| 103 |
|
| 104 |
+
if response.status_code == 200:
|
| 105 |
+
result = response.json()
|
| 106 |
+
if "choices" in result and len(result["choices"]) > 0:
|
| 107 |
+
ai_response = result["choices"][0]["message"]["content"]
|
| 108 |
+
return {
|
| 109 |
+
"success": True,
|
| 110 |
+
"response": ai_response,
|
| 111 |
+
"model": model_info["display_name"],
|
| 112 |
+
"provider": model_info["provider"]
|
| 113 |
+
}
|
| 114 |
+
else:
|
| 115 |
+
return {
|
| 116 |
+
"success": False,
|
| 117 |
+
"error": "No response generated"
|
| 118 |
+
}
|
| 119 |
else:
|
| 120 |
return {
|
| 121 |
+
"success": False,
|
| 122 |
+
"error": f"API Error: {response.status_code} - {response.text}"
|
|
|
|
| 123 |
}
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
except Exception as e:
|
| 126 |
return {
|
| 127 |
+
"success": False,
|
| 128 |
+
"error": f"Connection error: {str(e)}"
|
|
|
|
| 129 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
def create_chat_interface():
|
| 132 |
try:
|
| 133 |
+
chat_ai = AIChat()
|
| 134 |
except ValueError as e:
|
| 135 |
+
# Create error interface
|
| 136 |
+
with gr.Blocks(title="❌ Setup Required") as demo:
|
| 137 |
gr.Markdown(f"""
|
| 138 |
+
# ❌ Setup Required
|
| 139 |
|
| 140 |
+
**{str(e)}**
|
| 141 |
|
| 142 |
Please set the `HF_TOKEN` environment variable with your HuggingFace token.
|
| 143 |
|
| 144 |
+
Get your token at: https://huggingface.co/settings/tokens
|
| 145 |
""")
|
| 146 |
return demo
|
| 147 |
|
| 148 |
+
# Create model choices for dropdown
|
| 149 |
+
model_choices = [
|
| 150 |
+
(f"🚀 {info['display_name']} - {info['description']}", model_id)
|
| 151 |
+
for model_id, info in ADVANCED_MODELS.items()
|
| 152 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
def chat_with_ai(message, history, selected_model):
|
| 155 |
+
"""Handle chat conversation"""
|
| 156 |
+
if not message.strip():
|
| 157 |
+
return history, ""
|
| 158 |
+
|
| 159 |
+
if not selected_model:
|
| 160 |
+
history.append([message, "❌ Please select an AI model first"])
|
| 161 |
+
return history, ""
|
| 162 |
+
|
| 163 |
+
# Show typing indicator
|
| 164 |
+
history.append([message, "🤔 Thinking..."])
|
| 165 |
+
yield history, ""
|
| 166 |
+
|
| 167 |
+
# Convert gradio history to API format
|
| 168 |
+
conversation_history = []
|
| 169 |
+
for i, (user_msg, ai_msg) in enumerate(history[:-1]): # Exclude the current "thinking" message
|
| 170 |
+
if user_msg and ai_msg and ai_msg != "🤔 Thinking...":
|
| 171 |
+
conversation_history.append({"role": "user", "content": user_msg})
|
| 172 |
+
conversation_history.append({"role": "assistant", "content": ai_msg})
|
| 173 |
+
|
| 174 |
+
# Send message to AI
|
| 175 |
+
result = chat_ai.send_message(selected_model, message, conversation_history)
|
| 176 |
+
|
| 177 |
+
if result["success"]:
|
| 178 |
+
# Update the last message with the real response
|
| 179 |
+
history[-1] = [message, result["response"]]
|
| 180 |
+
yield history, ""
|
| 181 |
+
else:
|
| 182 |
+
# Update with error message
|
| 183 |
+
history[-1] = [message, f"❌ Error: {result['error']}"]
|
| 184 |
+
yield history, ""
|
| 185 |
|
| 186 |
+
def clear_chat():
|
| 187 |
+
"""Clear the chat history"""
|
| 188 |
+
return [], ""
|
| 189 |
+
|
| 190 |
+
def get_model_info(selected_model):
|
| 191 |
+
"""Get information about the selected model"""
|
| 192 |
+
if not selected_model or selected_model not in ADVANCED_MODELS:
|
| 193 |
+
return "Select a model to see details"
|
| 194 |
+
|
| 195 |
+
info = ADVANCED_MODELS[selected_model]
|
| 196 |
+
return f"""
|
| 197 |
+
**🤖 {info['display_name']}**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
+
**Provider:** {info['provider']}
|
| 200 |
+
**Category:** {info['category']}
|
| 201 |
+
**Description:** {info['description']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
Ready to chat! Type your message below.
|
|
|
|
| 204 |
"""
|
| 205 |
|
| 206 |
+
# Create the interface
|
| 207 |
+
with gr.Blocks(
|
| 208 |
+
title="🤖 Chat with Advanced AI Models",
|
| 209 |
+
theme=gr.themes.Soft(),
|
| 210 |
+
css="""
|
| 211 |
+
.chat-container {
|
| 212 |
+
max-width: 1000px;
|
| 213 |
+
margin: 0 auto;
|
| 214 |
+
}
|
| 215 |
+
.model-info {
|
| 216 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 217 |
+
color: white;
|
| 218 |
+
padding: 15px;
|
| 219 |
+
border-radius: 10px;
|
| 220 |
+
margin: 10px 0;
|
| 221 |
+
}
|
| 222 |
+
"""
|
| 223 |
+
) as demo:
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
gr.Markdown("""
|
| 226 |
+
# 🤖 Chat with Advanced AI Models
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
**Experience the latest AI technology!** Choose from powerful models and start chatting instantly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
✨ **What you can do:**
|
| 231 |
+
- Ask questions and get intelligent answers
|
| 232 |
+
- Get help with writing, analysis, and creative tasks
|
| 233 |
+
- Solve problems and get explanations
|
| 234 |
+
- Have natural conversations
|
| 235 |
|
|
|
|
| 236 |
""")
|
| 237 |
|
| 238 |
+
with gr.Row():
|
| 239 |
+
# Left column - Model selection
|
| 240 |
+
with gr.Column(scale=1):
|
| 241 |
+
gr.Markdown("### 🎯 Choose Your AI")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
+
model_selector = gr.Dropdown(
|
| 244 |
+
choices=model_choices,
|
| 245 |
+
label="Select AI Model",
|
| 246 |
+
info="Each model has different strengths",
|
| 247 |
+
interactive=True
|
| 248 |
)
|
| 249 |
|
| 250 |
+
model_info_display = gr.Markdown(
|
| 251 |
+
"Select a model to see details",
|
| 252 |
+
elem_classes=["model-info"]
|
|
|
|
| 253 |
)
|
| 254 |
|
| 255 |
+
# Update model info when selection changes
|
| 256 |
+
model_selector.change(
|
| 257 |
+
get_model_info,
|
| 258 |
+
inputs=model_selector,
|
| 259 |
+
outputs=model_info_display
|
| 260 |
)
|
| 261 |
|
| 262 |
+
# Right column - Chat interface
|
| 263 |
+
with gr.Column(scale=2):
|
| 264 |
+
gr.Markdown("### 💬 Chat Interface")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
+
chatbot = gr.Chatbot(
|
| 267 |
+
label="Conversation",
|
| 268 |
+
height=400,
|
| 269 |
+
show_label=False,
|
| 270 |
+
container=True,
|
| 271 |
+
elem_classes=["chat-container"]
|
| 272 |
)
|
| 273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
with gr.Row():
|
| 275 |
+
message_input = gr.Textbox(
|
| 276 |
+
placeholder="Type your message here...",
|
| 277 |
+
label="Your Message",
|
| 278 |
+
scale=4,
|
| 279 |
+
lines=1
|
| 280 |
)
|
| 281 |
+
send_btn = gr.Button("Send 📤", variant="primary", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
+
with gr.Row():
|
| 284 |
+
clear_btn = gr.Button("Clear Chat 🗑️", variant="secondary")
|
| 285 |
+
|
| 286 |
+
# Chat functionality
|
| 287 |
+
def submit_message(message, history, model):
|
| 288 |
+
return chat_with_ai(message, history, model)
|
| 289 |
+
|
| 290 |
+
# Send message on button click or enter
|
| 291 |
+
send_btn.click(
|
| 292 |
+
submit_message,
|
| 293 |
+
inputs=[message_input, chatbot, model_selector],
|
| 294 |
+
outputs=[chatbot, message_input]
|
| 295 |
+
).then(
|
| 296 |
+
lambda: "", outputs=message_input # Clear input after sending
|
| 297 |
+
)
|
| 298 |
|
| 299 |
+
message_input.submit(
|
| 300 |
+
submit_message,
|
| 301 |
+
inputs=[message_input, chatbot, model_selector],
|
| 302 |
+
outputs=[chatbot, message_input]
|
| 303 |
+
).then(
|
| 304 |
+
lambda: "", outputs=message_input # Clear input after sending
|
| 305 |
+
)
|
| 306 |
|
| 307 |
+
# Clear chat
|
| 308 |
+
clear_btn.click(clear_chat, outputs=[chatbot, message_input])
|
| 309 |
|
| 310 |
+
# Footer
|
| 311 |
+
gr.Markdown("""
|
| 312 |
+
---
|
| 313 |
|
| 314 |
+
## 🚀 **Featured AI Models:**
|
| 315 |
|
| 316 |
+
- **🚀 Ultra Fast**: Llama 3.3 70B on Cerebras chips
|
| 317 |
+
- **🧠 Reasoning**: DeepSeek R1 for complex problem solving
|
| 318 |
+
- **💪 Most Powerful**: Llama 3.1 405B for expert tasks
|
| 319 |
+
- **⚖️ Balanced**: Llama 3 70B for everyday use
|
| 320 |
+
- **💼 Enterprise**: Command R+ for professional work
|
| 321 |
+
- **🌍 Multilingual**: Qwen 2.5 72B for global communication
|
| 322 |
+
- **⚡ Efficient**: Mixtral 8x7B for quick responses
|
| 323 |
|
| 324 |
+
## 💡 **Tips for Better Conversations:**
|
| 325 |
|
| 326 |
+
- Be specific about what you want
|
| 327 |
+
- Ask follow-up questions for deeper insights
|
| 328 |
+
- Try different models for different types of tasks
|
| 329 |
+
- Use clear, natural language
|
| 330 |
|
| 331 |
---
|
| 332 |
|
| 333 |
+
*Powered by HuggingFace Inference Providers* 🤗
|
| 334 |
""")
|
| 335 |
|
| 336 |
return demo
|
| 337 |
|
| 338 |
if __name__ == "__main__":
|
| 339 |
try:
|
| 340 |
+
demo = create_chat_interface()
|
| 341 |
demo.launch(
|
| 342 |
server_name="0.0.0.0",
|
| 343 |
server_port=7860,
|
| 344 |
share=False
|
| 345 |
)
|
| 346 |
except Exception as e:
|
| 347 |
+
print(f"Error starting chat application: {e}")
|
| 348 |
print("Please ensure HF_TOKEN environment variable is set.")
|