File size: 11,088 Bytes
6267f13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import streamlit as st
import pandas as pd
import joblib

def create_dataframe_from_user_input():
    """
    Collects user input for house features using Streamlit and
    returns a Pandas DataFrame.  The input fields are organized
    into categorized sections for better usability.
    """

    # Define the lists of possible values for dropdown selections
    type_list = ['HOUSE', 'APARTMENT']
    subtype_list = ['HOUSE', 'APARTMENT', 'VILLA', 'APARTMENT_BLOCK', 'APARTMENT_GROUP',
                     'MIXED_USE_BUILDING', 'GROUND_FLOOR', 'DUPLEX', 'HOUSE_GROUP',
                     'FLAT_STUDIO', 'PENTHOUSE', 'EXCEPTIONAL_PROPERTY', 'MANSION',
                     'TOWN_HOUSE', 'SERVICE_FLAT', 'BUNGALOW', 'KOT', 'COUNTRY_COTTAGE',
                     'FARMHOUSE', 'LOFT', 'CHALET', 'TRIPLEX', 'CASTLE', 'OTHER_PROPERTY',
                     'MANOR_HOUSE', 'PAVILION']
    province_list = ['West Flanders', 'Antwerp', 'East Flanders', 'Brussels', 'Hainaut',
                     'Liège', 'Flemish Brabant', 'Limburg', 'Walloon Brabant', 'Namur',
                     'Luxembourg']
    building_condition_list = ['GOOD', 'AS_NEW', 'TO_RENOVATE', 'TO_BE_DONE_UP',
                               'JUST_RENOVATED', 'TO_RESTORE']
    flood_zone_type_list = ['NON_FLOOD_ZONE', 'POSSIBLE_FLOOD_ZONE', 'RECOGNIZED_FLOOD_ZONE',
                            'RECOGNIZED_N_CIRCUMSCRIBED_FLOOD_ZONE', 'CIRCUMSCRIBED_WATERSIDE_ZONE',
                            'CIRCUMSCRIBED_FLOOD_ZONE', 'POSSIBLE_N_CIRCUMSCRIBED_FLOOD_ZONE',
                            'POSSIBLE_N_CIRCUMSCRIBED_WATERSIDE_ZONE', 'RECOGNIZED_N_CIRCUMSCRIBED_WATERSIDE_ZONE']
    heating_type_list = ['GAS', 'FUELOIL', 'ELECTRIC', 'PELLET', 'WOOD', 'SOLAR', 'CARBON']
    kitchen_type_list = ['INSTALLED', 'HYPER_EQUIPPED', 'SEMI_EQUIPPED', 'NOT_INSTALLED',
                         'USA_HYPER_EQUIPPED', 'USA_INSTALLED', 'USA_SEMI_EQUIPPED',
                         'USA_UNINSTALLED']
    garden_orientation_list = ['SOUTH', 'SOUTH_WEST', 'SOUTH_EAST', 'WEST', 'EAST',
                               'NORTH_WEST', 'NORTH_EAST', 'NORTH']
    terrace_orientation_list = ['SOUTH', 'SOUTH_WEST', 'SOUTH_EAST', 'WEST', 'EAST',
                               'NORTH_WEST', 'NORTH_EAST', 'NORTH']
    epc_score_list = ['B', 'C', 'D', 'A', 'F', 'E', 'G', 'A+', 'A++']

    # Create Streamlit input fields
    st.header("Enter House Information")

    # --- Property Details ---
    st.subheader("Property Details")
    col1, col2 = st.columns(2)
    with col1:
        property_type = st.selectbox("Property Type", type_list, key='type')
        property_subtype = st.selectbox("Subtype", subtype_list, key='subtype')
        province = st.selectbox("Province", province_list, key='province')
        locality = st.text_input("Locality", key='locality')
        post_code = st.number_input("Post Code", min_value=1000, max_value=9999, step=1, key='postCode')
    with col2:
        building_condition = st.selectbox("Building Condition", building_condition_list, key='buildingCondition')
        building_construction_year = st.number_input("Building Construction Year", min_value=1000, max_value=2024, step=1, key='buildingConstructionYear')
        facade_count = st.number_input("Facade Count", min_value=0, step=1, key='facadeCount')
        floor_count = st.number_input("Floor Count", min_value=0, step=1, key='floorCount')
        flood_zone_type = st.selectbox("Flood Zone Type", flood_zone_type_list, key='floodZoneType')
        epc_score = st.selectbox("EPC Score", epc_score_list, key='epcScore')

    # --- Room Information ---
    st.subheader("Room Information")
    col3, col4 = st.columns(2)
    with col3:
        bedroom_count = st.number_input("Bedroom Count", min_value=0, step=1, key='bedroomCount')
        bathroom_count = st.number_input("Bathroom Count", min_value=0, step=1, key='bathroomCount')
        room_count = st.number_input("Room Count", min_value=0, step=1, key='roomCount')
        has_attic = st.selectbox("Has Attic", ['Yes', 'No'], key='hasAttic')
        has_basement = st.selectbox("Has Basement", ['Yes', 'No'], key='hasBasement')
        has_dressing_room = st.selectbox("Has Dressing Room", ['Yes', 'No'], key='hasDressingRoom')
        has_dining_room = st.selectbox("Has Dining Room", ['Yes', 'No'], key='hasDiningRoom')
        dining_room_surface = st.number_input("Dining Room Surface (sqm)", min_value=0.0, key='diningRoomSurface')
    with col4:
        has_living_room = st.selectbox("Has Living Room", ['Yes', 'No'], key='hasLivingRoom')
        living_room_surface = st.number_input("Living Room Surface (sqm)", min_value=0.0, key='livingRoomSurface')
        kitchen_surface = st.number_input("Kitchen Surface (sqm)", min_value=0.0, key='kitchenSurface')
        kitchen_type = st.selectbox("Kitchen Type", kitchen_type_list, key='kitchenType')
        toilet_count = st.number_input("Toilet Count", min_value=0, step=1, key='toiletCount')
        has_office = st.selectbox("Has Office", ['Yes', 'No'], key='hasOffice')
        has_lift = st.selectbox("Has Lift", ['Yes', 'No'], key='hasLift')

    # --- Surface Areas ---
    st.subheader("Surface Areas")
    col5, col6 = st.columns(2)
    with col5:
        habitable_surface = st.number_input("Habitable Surface (sqm)", min_value=0.0, key='habitableSurface')
        land_surface = st.number_input("Land Surface (sqm)", min_value=0.0, key='landSurface')
        garden_surface = st.number_input("Garden Surface (sqm)", min_value=0.0, key='gardenSurface')
    with col6:
        terrace_surface = st.number_input("Terrace Surface (sqm)", min_value=0.0, key='terraceSurface')
        street_facade_width = st.number_input("Street Facade Width (m)", min_value=0.0, key='streetFacadeWidth')
        monthly_cost = st.number_input("Monthly Cost (€)", min_value=0.0, key='monthlyCost')

    # --- Outdoor Features ---
    st.subheader("Outdoor Features")
    col7, col8 = st.columns(2)
    with col7:
        has_garden = st.selectbox("Has Garden", ['Yes', 'No'], key='hasGarden')
        garden_orientation = st.selectbox("Garden Orientation", garden_orientation_list, key='gardenOrientation')
        has_balcony = st.selectbox("Has Balcony", ['Yes', 'No'], key='hasBalcony')
        has_terrace = st.selectbox("Has Terrace", ['Yes', 'No'], key='hasTerrace')
        terrace_orientation = st.selectbox("Terrace Orientation", terrace_orientation_list, key='terraceOrientation')
    with col8:
        parking_count_indoor = st.number_input("Indoor Parking Count", min_value=0, step=1, key='parkingCountIndoor')
        parking_count_outdoor = st.number_input("Outdoor Parking Count", min_value=0, step=1, key='parkingCountOutdoor')
        has_swimming_pool = st.selectbox("Has Swimming Pool", ['Yes', 'No'], key='hasSwimmingPool')

    # --- Additional Features ---
    st.subheader("Additional Features")
    col9, col10 = st.columns(2)
    with col9:
        heating_type = st.selectbox("Heating Type", heating_type_list, key='heatingType')
        has_heat_pump = st.selectbox("Has Heat Pump", ['Yes', 'No'], key='hasHeatPump')
        has_photovoltaic_panels = st.selectbox("Has Photovoltaic Panels", ['Yes', 'No'], key='hasPhotovoltaicPanels')
        has_thermic_panels = st.selectbox("Has Thermic Panels", ['Yes', 'No'], key='hasThermicPanels')
    with col10:
        has_air_conditioning = st.selectbox("Has Air Conditioning", ['Yes', 'No'], key='hasAirConditioning')
        has_armored_door = st.selectbox("Has Armored Door", ['Yes', 'No'], key='hasArmoredDoor')
        has_visiophone = st.selectbox("Has Visiophone", ['Yes', 'No'], key='hasVisiophone')
        has_fireplace = st.selectbox("Has Fireplace", ['Yes', 'No'], key='hasFireplace')
        accessible_disabled_people = st.selectbox("Accessible Disabled People", ['True', 'False'], key='accessibleDisabledPeople')

    # Create a button to trigger DataFrame creation
    if st.button("Predict"):
        # Create the DataFrame
        data = {
            'type': property_type,
            'subtype': property_subtype,
            'bedroomCount': bedroom_count,
            'bathroomCount': bathroom_count,
            'province': province,
            'locality': locality,
            'postCode': post_code,
            'habitableSurface': habitable_surface,
            'roomCount': room_count,
            'monthlyCost': monthly_cost,
            'hasAttic': has_attic == 'Yes',
            'hasBasement': has_basement == 'Yes',
            'hasDressingRoom': has_dressing_room == 'Yes',
            'diningRoomSurface': dining_room_surface,
            'hasDiningRoom': has_dining_room == 'Yes',
            'buildingCondition': building_condition,
            'buildingConstructionYear': building_construction_year,
            'facadeCount': facade_count,
            'floorCount': floor_count,
            'streetFacadeWidth': street_facade_width,
            'hasLift': has_lift == 'Yes',
            'floodZoneType': flood_zone_type,
            'heatingType': heating_type,
            'hasHeatPump': has_heat_pump == 'Yes',
            'hasPhotovoltaicPanels': has_photovoltaic_panels == 'Yes',
            'hasThermicPanels': has_thermic_panels == 'Yes',
            'kitchenSurface': kitchen_surface,
            'kitchenType': kitchen_type,
            'landSurface': land_surface,
            'hasLivingRoom': has_living_room == 'Yes',
            'livingRoomSurface': living_room_surface,
            'hasBalcony': has_balcony == 'Yes',
            'hasGarden': has_garden == 'Yes',
            'gardenSurface': garden_surface,
            'gardenOrientation': garden_orientation,
            'parkingCountIndoor': parking_count_indoor,
            'parkingCountOutdoor': parking_count_outdoor,
            'hasAirConditioning': has_air_conditioning == 'Yes',
            'hasArmoredDoor': has_armored_door == 'Yes',
            'hasVisiophone': has_visiophone == 'Yes',
            'hasOffice': has_office == 'Yes',
            'toiletCount': toilet_count,
            'hasSwimmingPool': has_swimming_pool == 'Yes',
            'hasFireplace': has_fireplace == 'Yes',
            'hasTerrace': has_terrace == 'Yes',
            'terraceSurface': terrace_surface,
            'terraceOrientation': terrace_orientation,
            'accessibleDisabledPeople': accessible_disabled_people == 'True',
            'epcScore': epc_score
        }
        df = pd.DataFrame(data, index=[0])
        pipeline = joblib.load('saved/pipeline.pkl')
        model = joblib.load('saved/model.pkl')
        expected_columns = joblib.load('saved/columns.pkl')
        df_test = pipeline.transform(df)
        for col in expected_columns:
            if col not in df_test.columns:
                df_test[col] = 0

        df_test = df_test[expected_columns]
        preds = model.predict(df_test)
        st.subheader("Price prediction")
        st.markdown(f"<h1 style='text-align: center; color: red;'>{preds[0]:.2f} €</h1>", unsafe_allow_html=True)
        return df

if __name__ == "__main__":
    create_dataframe_from_user_input()