Spaces:
Sleeping
Sleeping
First commit
Browse files- .gitignore +90 -0
- Dockerfile +41 -0
- SatelliteClassification.py +292 -0
- requirements.txt +8 -0
.gitignore
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
env/
|
| 12 |
+
build/
|
| 13 |
+
develop-eggs/
|
| 14 |
+
dist/
|
| 15 |
+
downloads/
|
| 16 |
+
eggs/
|
| 17 |
+
.eggs/
|
| 18 |
+
lib/
|
| 19 |
+
lib64/
|
| 20 |
+
parts/
|
| 21 |
+
sdist/
|
| 22 |
+
var/
|
| 23 |
+
*.egg-info/
|
| 24 |
+
.installed.cfg
|
| 25 |
+
*.egg
|
| 26 |
+
|
| 27 |
+
# Installer logs
|
| 28 |
+
pip-log.txt
|
| 29 |
+
pip-delete-this-directory.txt
|
| 30 |
+
|
| 31 |
+
# Unit test / coverage reports
|
| 32 |
+
htmlcov/
|
| 33 |
+
.tox/
|
| 34 |
+
.nox/
|
| 35 |
+
.coverage
|
| 36 |
+
.coverage.*
|
| 37 |
+
.cache
|
| 38 |
+
nosetests.xml
|
| 39 |
+
coverage.xml
|
| 40 |
+
*.cover
|
| 41 |
+
.hypothesis/
|
| 42 |
+
.pytest_cache/
|
| 43 |
+
|
| 44 |
+
# Jupyter Notebook
|
| 45 |
+
.ipynb_checkpoints
|
| 46 |
+
|
| 47 |
+
# Pyre type checker
|
| 48 |
+
.pyre/
|
| 49 |
+
|
| 50 |
+
# VS Code
|
| 51 |
+
.vscode/
|
| 52 |
+
|
| 53 |
+
# System files
|
| 54 |
+
.DS_Store
|
| 55 |
+
Thumbs.db
|
| 56 |
+
|
| 57 |
+
# Hugging Face cache
|
| 58 |
+
hf_cache/
|
| 59 |
+
|
| 60 |
+
# Docker
|
| 61 |
+
*.log
|
| 62 |
+
|
| 63 |
+
# Gradio temp
|
| 64 |
+
*.gradio
|
| 65 |
+
|
| 66 |
+
# Model checkpoints
|
| 67 |
+
*.pth
|
| 68 |
+
*.pt
|
| 69 |
+
|
| 70 |
+
# Environment files
|
| 71 |
+
.env
|
| 72 |
+
.env.*
|
| 73 |
+
|
| 74 |
+
# Ignore data
|
| 75 |
+
*.arrow
|
| 76 |
+
*.lock
|
| 77 |
+
|
| 78 |
+
# Ignore images and plots
|
| 79 |
+
*.png
|
| 80 |
+
*.jpg
|
| 81 |
+
*.jpeg
|
| 82 |
+
*.bmp
|
| 83 |
+
*.gif
|
| 84 |
+
|
| 85 |
+
# Ignore other temp files
|
| 86 |
+
*.tmp
|
| 87 |
+
*.temp
|
| 88 |
+
|
| 89 |
+
# Ignore README artifacts
|
| 90 |
+
*.md~
|
Dockerfile
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use the official Python image with a version compatible with torch and gradio
|
| 2 |
+
FROM python:3.11-slim
|
| 3 |
+
|
| 4 |
+
# Set environment variables
|
| 5 |
+
ENV PYTHONDONTWRITEBYTECODE=1 \
|
| 6 |
+
PYTHONUNBUFFERED=1 \
|
| 7 |
+
HF_HOME=/app/hf_cache
|
| 8 |
+
|
| 9 |
+
# Set work directory
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
# Install system dependencies
|
| 13 |
+
RUN apt-get update && \
|
| 14 |
+
apt-get install -y --no-install-recommends \
|
| 15 |
+
build-essential \
|
| 16 |
+
git \
|
| 17 |
+
libglib2.0-0 \
|
| 18 |
+
libsm6 \
|
| 19 |
+
libxext6 \
|
| 20 |
+
libxrender-dev \
|
| 21 |
+
ffmpeg \
|
| 22 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 23 |
+
|
| 24 |
+
# Copy requirements
|
| 25 |
+
COPY requirements.txt ./
|
| 26 |
+
|
| 27 |
+
# Install Python dependencies
|
| 28 |
+
RUN pip install --upgrade pip && \
|
| 29 |
+
pip install --no-cache-dir -r requirements.txt
|
| 30 |
+
|
| 31 |
+
# Copy the rest of the code
|
| 32 |
+
COPY . .
|
| 33 |
+
|
| 34 |
+
# Expose port for Gradio
|
| 35 |
+
EXPOSE 7860
|
| 36 |
+
|
| 37 |
+
# Set Gradio to listen on all interfaces (required for Spaces)
|
| 38 |
+
ENV GRADIO_SERVER_NAME=0.0.0.0
|
| 39 |
+
|
| 40 |
+
# Run the app
|
| 41 |
+
CMD ["python", "SatelliteClassification.py"]
|
SatelliteClassification.py
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torchvision.models import resnet18
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
import numpy as np
|
| 8 |
+
import random
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import io
|
| 12 |
+
from torch.utils.data import DataLoader
|
| 13 |
+
import base64
|
| 14 |
+
|
| 15 |
+
# Model architecture definition
|
| 16 |
+
class ResNet18_Dropout(nn.Module):
|
| 17 |
+
def __init__(self, in_channels, num_classes, dropout_rate=0.3):
|
| 18 |
+
super().__init__()
|
| 19 |
+
self.model = resnet18(weights=None)
|
| 20 |
+
self.model.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
| 21 |
+
in_features = self.model.fc.in_features
|
| 22 |
+
self.model.fc = nn.Sequential(
|
| 23 |
+
nn.Dropout(dropout_rate),
|
| 24 |
+
nn.Linear(in_features, num_classes)
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
return self.model(x)
|
| 29 |
+
|
| 30 |
+
def transform_multispectral_map(example):
|
| 31 |
+
image = np.array(example["image"], dtype=np.float32)
|
| 32 |
+
|
| 33 |
+
if image.ndim != 3 or image.shape[2] != 13:
|
| 34 |
+
raise ValueError(f"Expected shape (H, W, 13), got {image.shape}")
|
| 35 |
+
|
| 36 |
+
# Normalize
|
| 37 |
+
image = image / 2750.0
|
| 38 |
+
image = np.clip(image, 0, 1)
|
| 39 |
+
|
| 40 |
+
# === DATA AUGMENTATION ===
|
| 41 |
+
# Horizontal flip
|
| 42 |
+
if random.random() < 0.5:
|
| 43 |
+
image = np.flip(image, axis=1).copy()
|
| 44 |
+
|
| 45 |
+
# Vertical flip
|
| 46 |
+
if random.random() < 0.5:
|
| 47 |
+
image = np.flip(image, axis=0).copy()
|
| 48 |
+
|
| 49 |
+
# Rotation (by 90, 180, 270)
|
| 50 |
+
if random.random() < 0.5:
|
| 51 |
+
k = random.choice([1, 2, 3])
|
| 52 |
+
image = np.rot90(image, k=k, axes=(0, 1)).copy()
|
| 53 |
+
|
| 54 |
+
# === SHAPE FORMAT ===
|
| 55 |
+
image = image.transpose(2, 0, 1) # (C=13, H, W)
|
| 56 |
+
|
| 57 |
+
return {
|
| 58 |
+
"image": torch.tensor(image, dtype=torch.float32),
|
| 59 |
+
"label": torch.tensor(example["label"], dtype=torch.long)
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
# RGB conversion functions
|
| 63 |
+
def load_rgb_from_multispectral_sample(numpy_array):
|
| 64 |
+
"""
|
| 65 |
+
Takes a NumPy array with 13 multispectral bands and returns a scaled RGB NumPy array.
|
| 66 |
+
Equivalent to loading bands 4-3-2 and scaling as GDAL would.
|
| 67 |
+
"""
|
| 68 |
+
# GDAL-style scaling: scale 0–2750 -> 1–255
|
| 69 |
+
def scale_band(band):
|
| 70 |
+
band = np.clip((band / 2750) * 255, 0, 255)
|
| 71 |
+
return band.astype(np.uint8)
|
| 72 |
+
|
| 73 |
+
# Bands 4 (red), 3 (green), 2 (blue) => index 3, 2, 1 in 0-based
|
| 74 |
+
bands = [3, 2, 1]
|
| 75 |
+
|
| 76 |
+
# Ensure the input is a NumPy array
|
| 77 |
+
if not isinstance(numpy_array, np.ndarray):
|
| 78 |
+
raise TypeError("Input must be a NumPy array")
|
| 79 |
+
|
| 80 |
+
# Check if the array has the expected number of channels (13)
|
| 81 |
+
if numpy_array.shape[-1] != 13:
|
| 82 |
+
raise ValueError(f"Input array must have 13 channels, but got {numpy_array.shape[-1]}")
|
| 83 |
+
|
| 84 |
+
# Extract and scale the RGB bands from the NumPy array
|
| 85 |
+
rgb = np.stack([scale_band(numpy_array[:, :, b]) for b in bands], axis=-1)
|
| 86 |
+
return rgb
|
| 87 |
+
|
| 88 |
+
def load_rgb_from_transformed_tensor(tensor_image):
|
| 89 |
+
"""
|
| 90 |
+
Takes a torch.Tensor with 13 multispectral bands (C, H, W) and returns a scaled RGB NumPy array.
|
| 91 |
+
"""
|
| 92 |
+
if not isinstance(tensor_image, torch.Tensor):
|
| 93 |
+
raise TypeError("Input must be a torch.Tensor")
|
| 94 |
+
if tensor_image.shape[0] != 13:
|
| 95 |
+
raise ValueError(f"Expected 13 channels, got {tensor_image.shape[0]}")
|
| 96 |
+
|
| 97 |
+
# Convert to NumPy (C, H, W) → (H, W, C)
|
| 98 |
+
np_image = tensor_image.numpy()
|
| 99 |
+
np_image = np.transpose(np_image, (1, 2, 0)) # (H, W, 13)
|
| 100 |
+
|
| 101 |
+
# Bands 4-3-2 → index 3, 2, 1
|
| 102 |
+
bands = [3, 2, 1]
|
| 103 |
+
|
| 104 |
+
def scale_band(band):
|
| 105 |
+
band = np.clip((band * 255), 0, 255)
|
| 106 |
+
return band.astype(np.uint8)
|
| 107 |
+
|
| 108 |
+
rgb = np.stack([scale_band(np_image[:, :, b]) for b in bands], axis=-1) # (H, W, 3)
|
| 109 |
+
return rgb
|
| 110 |
+
|
| 111 |
+
# Global variables for model and dataset
|
| 112 |
+
model = None
|
| 113 |
+
dataset = None
|
| 114 |
+
label_names = None
|
| 115 |
+
label2id = None
|
| 116 |
+
id2label = None
|
| 117 |
+
|
| 118 |
+
def load_model_and_data():
|
| 119 |
+
"""Load the model and dataset"""
|
| 120 |
+
global model, dataset, label_names, label2id, id2label
|
| 121 |
+
|
| 122 |
+
try:
|
| 123 |
+
# Load dataset
|
| 124 |
+
print("Loading dataset...")
|
| 125 |
+
dataset = load_dataset("blanchon/EuroSAT_MSI", cache_dir="./hf_cache", streaming=False)
|
| 126 |
+
dataset["test"] = dataset["test"].map(transform_multispectral_map)
|
| 127 |
+
dataset["test"].set_format(type="torch", columns=["image", "label"])
|
| 128 |
+
|
| 129 |
+
# Setup labels
|
| 130 |
+
label_names = dataset["train"].features['label'].names
|
| 131 |
+
label2id = {name: i for i, name in enumerate(label_names)}
|
| 132 |
+
id2label = {v: k for k, v in label2id.items()}
|
| 133 |
+
num_classes = len(label_names)
|
| 134 |
+
|
| 135 |
+
# Load model
|
| 136 |
+
print("Loading model...")
|
| 137 |
+
model_path = hf_hub_download(repo_id="Rhodham96/Resnet18DropoutSentinel", filename="pytorch_model.bin")
|
| 138 |
+
model = ResNet18_Dropout(in_channels=13, num_classes=num_classes)
|
| 139 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
| 140 |
+
model.eval()
|
| 141 |
+
|
| 142 |
+
print(f"Model and dataset loaded successfully!")
|
| 143 |
+
print(f"Classes: {label_names}")
|
| 144 |
+
return True
|
| 145 |
+
|
| 146 |
+
except Exception as e:
|
| 147 |
+
print(f"Error loading model or dataset: {str(e)}")
|
| 148 |
+
return False
|
| 149 |
+
|
| 150 |
+
def predict_images():
|
| 151 |
+
"""Process 16 random images and return results"""
|
| 152 |
+
global model, dataset, id2label
|
| 153 |
+
|
| 154 |
+
if model is None or dataset is None:
|
| 155 |
+
return "Model or dataset not loaded. Please wait for initialization."
|
| 156 |
+
|
| 157 |
+
test_dataloader = DataLoader(dataset["test"], batch_size=32, shuffle=True)
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
# Get 16 random samples from validation set
|
| 161 |
+
|
| 162 |
+
num_batches = 5
|
| 163 |
+
collected_images = []
|
| 164 |
+
collected_labels = []
|
| 165 |
+
collected_preds = []
|
| 166 |
+
#criterion = nn.CrossEntropyLoss()
|
| 167 |
+
model.eval()
|
| 168 |
+
with torch.no_grad():
|
| 169 |
+
for i, batch in enumerate(test_dataloader):
|
| 170 |
+
if i >= num_batches:
|
| 171 |
+
break
|
| 172 |
+
images = batch['image']
|
| 173 |
+
labels = batch['label']
|
| 174 |
+
|
| 175 |
+
outputs = model(images)
|
| 176 |
+
_, preds = outputs.max(1)
|
| 177 |
+
|
| 178 |
+
collected_images.append(images.cpu())
|
| 179 |
+
collected_labels.append(labels.cpu())
|
| 180 |
+
collected_preds.append(preds.cpu())
|
| 181 |
+
|
| 182 |
+
# Concatenate all samples
|
| 183 |
+
images = torch.cat(collected_images)
|
| 184 |
+
labels = torch.cat(collected_labels)
|
| 185 |
+
preds = torch.cat(collected_preds)
|
| 186 |
+
|
| 187 |
+
# Randomly select 10 indices
|
| 188 |
+
indices = random.sample(range(len(images)), 10)
|
| 189 |
+
|
| 190 |
+
# Prepare for plotting
|
| 191 |
+
selected_images = images[indices]
|
| 192 |
+
selected_labels = labels[indices]
|
| 193 |
+
selected_preds = preds[indices]
|
| 194 |
+
image_to_see_layers = selected_images[0]
|
| 195 |
+
label_to_see_layers = selected_labels[0]
|
| 196 |
+
# Plot
|
| 197 |
+
fig, axes = plt.subplots(2, 5, figsize=(15, 6))
|
| 198 |
+
axes = axes.flatten()
|
| 199 |
+
|
| 200 |
+
for i in range(10):
|
| 201 |
+
img = load_rgb_from_transformed_tensor(selected_images[i])
|
| 202 |
+
|
| 203 |
+
axes[i].imshow(img)
|
| 204 |
+
axes[i].axis("off")
|
| 205 |
+
true_label = id2label[selected_labels[i].item()]
|
| 206 |
+
pred_label = id2label[selected_preds[i].item()]
|
| 207 |
+
color = "green" if pred_label == true_label else "red"
|
| 208 |
+
axes[i].set_title(f"T: {true_label}\nP: {pred_label}", color=color)
|
| 209 |
+
|
| 210 |
+
plt.tight_layout()
|
| 211 |
+
|
| 212 |
+
# Convert plot to image
|
| 213 |
+
buf = io.BytesIO()
|
| 214 |
+
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
| 215 |
+
buf.seek(0)
|
| 216 |
+
plt.close()
|
| 217 |
+
|
| 218 |
+
# Convert to PIL Image
|
| 219 |
+
result_image = Image.open(buf)
|
| 220 |
+
|
| 221 |
+
# Calculate accuracy
|
| 222 |
+
correct_predictions = (selected_preds == selected_labels).sum().item()
|
| 223 |
+
accuracy = correct_predictions / len(selected_labels) * 100
|
| 224 |
+
summary = f"Accuracy: {correct_predictions}/{len(selected_labels)} ({accuracy:.1f}%)\n"
|
| 225 |
+
summary += f"Classes: {', '.join(label_names)}"
|
| 226 |
+
|
| 227 |
+
return result_image, summary
|
| 228 |
+
|
| 229 |
+
except Exception as e:
|
| 230 |
+
error_msg = f"Error during prediction: {str(e)}"
|
| 231 |
+
print(error_msg)
|
| 232 |
+
# Return a placeholder image and error message
|
| 233 |
+
placeholder = Image.new('RGB', (800, 600), color='lightgray')
|
| 234 |
+
return placeholder, error_msg
|
| 235 |
+
|
| 236 |
+
def create_interface():
|
| 237 |
+
"""Create the Gradio interface"""
|
| 238 |
+
|
| 239 |
+
# Initialize model and data
|
| 240 |
+
init_success = load_model_and_data()
|
| 241 |
+
|
| 242 |
+
if not init_success:
|
| 243 |
+
def error_function():
|
| 244 |
+
placeholder = Image.new('RGB', (800, 600), color='red')
|
| 245 |
+
return placeholder, "Failed to load model or dataset. Please check the logs."
|
| 246 |
+
|
| 247 |
+
interface = gr.Interface(
|
| 248 |
+
fn=error_function,
|
| 249 |
+
inputs=[],
|
| 250 |
+
outputs=[
|
| 251 |
+
gr.Image(type="pil", label="Results"),
|
| 252 |
+
gr.Textbox(label="Summary")
|
| 253 |
+
],
|
| 254 |
+
title="🛰️ Satellite Image Classification - ERROR",
|
| 255 |
+
description="Failed to initialize the application."
|
| 256 |
+
)
|
| 257 |
+
return interface
|
| 258 |
+
|
| 259 |
+
# Create the main interface
|
| 260 |
+
interface = gr.Interface(
|
| 261 |
+
fn=predict_images,
|
| 262 |
+
inputs=[],
|
| 263 |
+
outputs=[
|
| 264 |
+
gr.Image(type="pil", label="Classification Results (16 Random Images)"),
|
| 265 |
+
gr.Textbox(label="Summary", lines=3)
|
| 266 |
+
],
|
| 267 |
+
title="🛰️ Satellite Image Classification with ResNet18",
|
| 268 |
+
description="""
|
| 269 |
+
This app classifies satellite images from the EuroSAT dataset using a trained ResNet18 model.
|
| 270 |
+
|
| 271 |
+
**How it works:**
|
| 272 |
+
- Loads 16 random satellite images from the validation set
|
| 273 |
+
- Each image has 13 spectral bands, converted to RGB for display
|
| 274 |
+
- Shows true labels vs predicted labels
|
| 275 |
+
- Green titles = correct predictions, Red titles = incorrect predictions
|
| 276 |
+
|
| 277 |
+
**Dataset:** EuroSAT with 13 multispectral bands
|
| 278 |
+
**Model:** ResNet18 with dropout, trained on 13-channel input
|
| 279 |
+
|
| 280 |
+
Click "Submit" to process 16 new random images!
|
| 281 |
+
""",
|
| 282 |
+
examples=[],
|
| 283 |
+
cache_examples=False,
|
| 284 |
+
allow_flagging="never"
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
return interface
|
| 288 |
+
|
| 289 |
+
# Launch the app
|
| 290 |
+
if __name__ == "__main__":
|
| 291 |
+
demo = create_interface()
|
| 292 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
torchvision>=0.15.0
|
| 4 |
+
datasets>=2.0.0
|
| 5 |
+
huggingface_hub>=0.14.0
|
| 6 |
+
numpy
|
| 7 |
+
pillow
|
| 8 |
+
matplotlib
|