Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,35 +1,71 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
ai_optimizer = gr.Interface.load("models/facebook/dino-vitb16")
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
# Define the Gradio interface
|
| 22 |
iface = gr.Interface(
|
| 23 |
-
fn=
|
| 24 |
-
inputs=
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
outputs=[
|
| 29 |
-
gr.outputs.Textbox(label="Optimizations"),
|
| 30 |
-
gr.outputs.Textbox(label="Cost Estimate"),
|
| 31 |
-
],
|
| 32 |
)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from gradio.inputs import File
|
| 3 |
+
from gradio.outputs import Text, Image
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image as PilImage
|
| 7 |
+
from torchvision.transforms import ToTensor
|
| 8 |
|
| 9 |
+
# Load the DINO model
|
| 10 |
+
ai_optimizer = gr.Interface.load("models/facebook/dino-vitb16")
|
|
|
|
| 11 |
|
| 12 |
+
def load_data(image_file):
|
| 13 |
+
"""
|
| 14 |
+
This function should load the data from the provided image file.
|
| 15 |
+
This will convert the image file into a PIL Image.
|
| 16 |
+
"""
|
| 17 |
+
image = PilImage.open(image_file)
|
| 18 |
+
return image
|
| 19 |
|
| 20 |
+
def load_model():
|
| 21 |
+
"""
|
| 22 |
+
This function should load your model. Here, we're returning the DINO model.
|
| 23 |
+
"""
|
| 24 |
+
model = ai_optimizer
|
| 25 |
+
return model
|
| 26 |
|
| 27 |
+
def generate_text_report(analysis):
|
| 28 |
+
"""
|
| 29 |
+
This function should generate a text report based on the analysis made by your model.
|
| 30 |
+
Here, we're simply returning a placeholder.
|
| 31 |
+
"""
|
| 32 |
+
text_report = "your text report"
|
| 33 |
+
return text_report
|
| 34 |
|
| 35 |
+
def generate_updated_blueprint_image(analysis):
|
| 36 |
+
"""
|
| 37 |
+
This function should generate an image based on the analysis made by your model.
|
| 38 |
+
Here, we're simply returning a placeholder.
|
| 39 |
+
"""
|
| 40 |
+
image = "your image"
|
| 41 |
+
return image
|
| 42 |
|
| 43 |
+
def analyze_blueprint(image_file):
|
| 44 |
+
image = load_data(image_file)
|
| 45 |
+
model = load_model()
|
| 46 |
+
|
| 47 |
+
# Transform the image to tensor
|
| 48 |
+
transform = ToTensor()
|
| 49 |
+
image_tensor = transform(image)
|
| 50 |
+
|
| 51 |
+
# Add an extra dimension at the start for the batch size
|
| 52 |
+
image_tensor = image_tensor.unsqueeze(0)
|
| 53 |
+
|
| 54 |
+
# Pass the image through the model
|
| 55 |
+
analysis = model.predict(image_tensor)
|
| 56 |
+
|
| 57 |
+
text_report = generate_text_report(analysis)
|
| 58 |
+
updated_blueprint = generate_updated_blueprint_image(analysis)
|
| 59 |
+
|
| 60 |
+
return text_report, updated_blueprint
|
| 61 |
|
|
|
|
| 62 |
iface = gr.Interface(
|
| 63 |
+
fn=analyze_blueprint,
|
| 64 |
+
inputs=File(label="Input Blueprint Image"),
|
| 65 |
+
outputs=[Text(label="Analysis and Cost Estimation"), Image(plot=True, label="Updated Blueprint")],
|
| 66 |
+
title="Blueprint Analyzer",
|
| 67 |
+
description="Upload a blueprint image and get back an analysis and cost estimation."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
|
| 70 |
+
if __name__ == "__main__":
|
| 71 |
+
iface.launch()
|