Spaces:
No application file
No application file
Upload 2 files
Browse files- dataset.py +110 -0
- vae_embeddings.ipynb +276 -0
dataset.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
| 15 |
+
"""TODO: Add a description here."""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import zipfile
|
| 19 |
+
import os
|
| 20 |
+
import datasets
|
| 21 |
+
from PIL import Image
|
| 22 |
+
from io import BytesIO
|
| 23 |
+
|
| 24 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
| 25 |
+
class sdbias(datasets.GeneratorBasedBuilder):
|
| 26 |
+
"""TODO: Short description of my dataset."""
|
| 27 |
+
|
| 28 |
+
VERSION = datasets.Version("1.1.0")
|
| 29 |
+
|
| 30 |
+
# This is an example of a dataset with multiple configurations.
|
| 31 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
| 32 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 33 |
+
|
| 34 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
| 35 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 36 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 37 |
+
|
| 38 |
+
# You will be able to load one or the other configurations in the following list with
|
| 39 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 40 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 41 |
+
BUILDER_CONFIGS = [
|
| 42 |
+
datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 46 |
+
|
| 47 |
+
def _info(self):
|
| 48 |
+
if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
| 49 |
+
features = datasets.Features(
|
| 50 |
+
{
|
| 51 |
+
"adjective": datasets.Value("string"),
|
| 52 |
+
"profession": datasets.Value("string"),
|
| 53 |
+
"seed": datasets.Value("int32"),
|
| 54 |
+
"image": datasets.Image()
|
| 55 |
+
# These are the features of your dataset like images, labels ...
|
| 56 |
+
}
|
| 57 |
+
)
|
| 58 |
+
return datasets.DatasetInfo(
|
| 59 |
+
# This is the description that will appear on the datasets page.
|
| 60 |
+
description="bla",
|
| 61 |
+
# This defines the different columns of the dataset and their types
|
| 62 |
+
features=features, # Here we define them above because they are different between the two configurations
|
| 63 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 64 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 65 |
+
# supervised_keys=("sentence", "label"),
|
| 66 |
+
# Homepage of the dataset for documentation
|
| 67 |
+
homepage="bla",
|
| 68 |
+
# License for the dataset if available
|
| 69 |
+
license="bla",
|
| 70 |
+
# Citation for the dataset
|
| 71 |
+
citation="bli",
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
def _split_generators(self, dl_manager):
|
| 75 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 76 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 77 |
+
|
| 78 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 79 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 80 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 81 |
+
data_dir = "/mnt/1da05489-3812-4f15-a6e5-c8d3c57df39e/StableDiffusionBiasExplorer/zipped_images"
|
| 82 |
+
return [
|
| 83 |
+
datasets.SplitGenerator(
|
| 84 |
+
name=datasets.Split.TRAIN,
|
| 85 |
+
# These kwargs will be passed to _generate_examples
|
| 86 |
+
gen_kwargs={
|
| 87 |
+
"filepath":data_dir,
|
| 88 |
+
"split": "train",
|
| 89 |
+
},
|
| 90 |
+
),
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 94 |
+
def _generate_examples(self, filepath, split):
|
| 95 |
+
zip_files = os.listdir(filepath)
|
| 96 |
+
key = 0
|
| 97 |
+
for zip_file in zip_files:
|
| 98 |
+
with zipfile.ZipFile(filepath + "/" + zip_file, "r") as zf:
|
| 99 |
+
for f in zf.filelist:
|
| 100 |
+
if ".jpg" in f.filename:
|
| 101 |
+
jpg_content = BytesIO(zf.read(f))
|
| 102 |
+
with Image.open(jpg_content) as image:
|
| 103 |
+
yield key, {
|
| 104 |
+
"adjective": zip_file.split("_", 1)[0],
|
| 105 |
+
"profession": zip_file.split("_", 1)[-1].replace(".zip",""),
|
| 106 |
+
"seed": int(f.filename.split("Seed_")[-1].split("/")[0]),
|
| 107 |
+
"image": image,
|
| 108 |
+
}
|
| 109 |
+
key+=1
|
| 110 |
+
|
vae_embeddings.ipynb
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
+
"id": "873b1354-b85f-4c5b-9163-95190f07b39a",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import os\n",
|
| 11 |
+
"import zipfile\n",
|
| 12 |
+
"from PIL import Image\n",
|
| 13 |
+
"from io import BytesIO\n",
|
| 14 |
+
"import numpy as np\n",
|
| 15 |
+
"from datasets import load_dataset\n",
|
| 16 |
+
"import torch\n",
|
| 17 |
+
"from diffusers import AutoencoderKL, UNet2DModel, UNet2DConditionModel\n",
|
| 18 |
+
"import pickle"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": 2,
|
| 24 |
+
"id": "35949720-3e01-43b0-8487-a1b2131d5a9e",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"outputs": [],
|
| 27 |
+
"source": [
|
| 28 |
+
"def preprocess_image(image):\n",
|
| 29 |
+
" w, h = image.size\n",
|
| 30 |
+
" w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32\n",
|
| 31 |
+
" image = image.resize((w, h), resample=Image.Resampling.LANCZOS)\n",
|
| 32 |
+
" image = np.array(image).astype(np.float32) / 255.0\n",
|
| 33 |
+
" image = image[None].transpose(0, 3, 1, 2)\n",
|
| 34 |
+
" return 2.0 * image - 1.0\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"def vae_embedding(preprocessed, num_samples=5, device=\"cuda\"):\n",
|
| 37 |
+
" with torch.no_grad():\n",
|
| 38 |
+
" processed_image = preprocessed.to(device=device)\n",
|
| 39 |
+
" latent_dist = vae.encode(processed_image).latent_dist\n",
|
| 40 |
+
" t = [0.18215*latent_dist.sample().to(\"cpu\").squeeze() for i in range(num_samples)] # sample num_samples latent vecs\n",
|
| 41 |
+
" t = torch.stack(t) # stack them\n",
|
| 42 |
+
" return torch.mean(t, axis=0).numpy() #average them. output shape: (4,64,64)"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": 3,
|
| 48 |
+
"id": "6ebd9d84-98f7-4883-ac4b-0ec875b86911",
|
| 49 |
+
"metadata": {
|
| 50 |
+
"tags": []
|
| 51 |
+
},
|
| 52 |
+
"outputs": [
|
| 53 |
+
{
|
| 54 |
+
"name": "stderr",
|
| 55 |
+
"output_type": "stream",
|
| 56 |
+
"text": [
|
| 57 |
+
"Using custom data configuration SDbiaseval--dataset-cc8e38e46c1acd54\n",
|
| 58 |
+
"Found cached dataset parquet (/mnt/1da05489-3812-4f15-a6e5-c8d3c57df39e/cache/huggingface/SDbiaseval___parquet/SDbiaseval--dataset-cc8e38e46c1acd54/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"data": {
|
| 63 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 64 |
+
"model_id": "f184861d2e2749c9b7c1c1ea3910be27",
|
| 65 |
+
"version_major": 2,
|
| 66 |
+
"version_minor": 0
|
| 67 |
+
},
|
| 68 |
+
"text/plain": [
|
| 69 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
| 70 |
+
]
|
| 71 |
+
},
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"output_type": "display_data"
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"name": "stdout",
|
| 77 |
+
"output_type": "stream",
|
| 78 |
+
"text": [
|
| 79 |
+
"CPU times: user 196 ms, sys: 23.3 ms, total: 219 ms\n",
|
| 80 |
+
"Wall time: 2.51 s\n"
|
| 81 |
+
]
|
| 82 |
+
}
|
| 83 |
+
],
|
| 84 |
+
"source": [
|
| 85 |
+
"%%time\n",
|
| 86 |
+
"# dset = load_dataset(\"./dataset.py\", ignore_verifications=True) This uses the loading script and loads data from the zipped folders\n",
|
| 87 |
+
"dset = load_dataset(\"SDbiaseval/dataset\")\n",
|
| 88 |
+
"ds = dset[\"train\"]"
|
| 89 |
+
]
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "code",
|
| 93 |
+
"execution_count": 4,
|
| 94 |
+
"id": "fd832e2b-6ced-43ca-a4ca-fd54f523d22e",
|
| 95 |
+
"metadata": {
|
| 96 |
+
"tags": []
|
| 97 |
+
},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": [
|
| 100 |
+
"vae = AutoencoderKL.from_pretrained(\"CompVis/stable-diffusion-v1-4\", subfolder=\"vae\");\n",
|
| 101 |
+
"vae.eval()\n",
|
| 102 |
+
"vae.to(\"cuda\");"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "code",
|
| 107 |
+
"execution_count": 5,
|
| 108 |
+
"id": "b2af2692-a372-4b96-8250-8c83c122457d",
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [
|
| 111 |
+
{
|
| 112 |
+
"name": "stdout",
|
| 113 |
+
"output_type": "stream",
|
| 114 |
+
"text": [
|
| 115 |
+
"19554 batches of 16. Last batch of size 15.\n"
|
| 116 |
+
]
|
| 117 |
+
}
|
| 118 |
+
],
|
| 119 |
+
"source": [
|
| 120 |
+
"ix = np.arange(len(ds))\n",
|
| 121 |
+
"np.random.shuffle(ix)\n",
|
| 122 |
+
"batch_size = 16\n",
|
| 123 |
+
"batche_indices = np.array_split(ix, np.ceil(len(ix)/batch_size))\n",
|
| 124 |
+
"print(f\"{len(batche_indices)} batches of {batch_size}. Last batch of size {len(batche_indices[-1])}.\")"
|
| 125 |
+
]
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"cell_type": "code",
|
| 129 |
+
"execution_count": 15,
|
| 130 |
+
"id": "8a54fdf1-f0e5-487e-b53d-afc8dbcc989c",
|
| 131 |
+
"metadata": {},
|
| 132 |
+
"outputs": [
|
| 133 |
+
{
|
| 134 |
+
"name": "stdout",
|
| 135 |
+
"output_type": "stream",
|
| 136 |
+
"text": [
|
| 137 |
+
"CPU times: user 9h 52min 30s, sys: 2min 25s, total: 9h 54min 55s\n",
|
| 138 |
+
"Wall time: 7h 54min 48s\n"
|
| 139 |
+
]
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"source": [
|
| 143 |
+
"%%time\n",
|
| 144 |
+
"embs = []\n",
|
| 145 |
+
"for i in batche_indices:\n",
|
| 146 |
+
" imx = ds.select(i)[\"image\"]\n",
|
| 147 |
+
" preprocessed = np.concatenate([preprocess_image(im) for im in imx])\n",
|
| 148 |
+
" emb = vae_embedding(torch.from_numpy(preprocessed), num_samples=10)\n",
|
| 149 |
+
" embs.append(emb)"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "code",
|
| 154 |
+
"execution_count": 16,
|
| 155 |
+
"id": "06d9346c-912f-4e24-a0ff-d5386c1780a1",
|
| 156 |
+
"metadata": {},
|
| 157 |
+
"outputs": [],
|
| 158 |
+
"source": [
|
| 159 |
+
"with open('embs.pkl', 'wb') as f:\n",
|
| 160 |
+
" pickle.dump(embs, f)"
|
| 161 |
+
]
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"cell_type": "code",
|
| 165 |
+
"execution_count": null,
|
| 166 |
+
"id": "3d0cbe87-dfb2-4c59-adf5-b4d015e2d441",
|
| 167 |
+
"metadata": {},
|
| 168 |
+
"outputs": [],
|
| 169 |
+
"source": [
|
| 170 |
+
"embeddings = np.concatenate(embs)"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": 4,
|
| 176 |
+
"id": "a6e826a9-93e0-4298-813d-9c42d139ff96",
|
| 177 |
+
"metadata": {},
|
| 178 |
+
"outputs": [],
|
| 179 |
+
"source": [
|
| 180 |
+
"with open(\"embs.pkl\", \"rb\") as f:\n",
|
| 181 |
+
" embeddings = pickle.load(f)"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"execution_count": 5,
|
| 187 |
+
"id": "0783bb60-5439-4a62-a4ac-15198688b331",
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"outputs": [
|
| 190 |
+
{
|
| 191 |
+
"name": "stdout",
|
| 192 |
+
"output_type": "stream",
|
| 193 |
+
"text": [
|
| 194 |
+
"CPU times: user 3.82 s, sys: 4.34 s, total: 8.16 s\n",
|
| 195 |
+
"Wall time: 8.2 s\n"
|
| 196 |
+
]
|
| 197 |
+
}
|
| 198 |
+
],
|
| 199 |
+
"source": [
|
| 200 |
+
"%%time\n",
|
| 201 |
+
"embeddings = np.concatenate(embeddings)"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"cell_type": "code",
|
| 206 |
+
"execution_count": 6,
|
| 207 |
+
"id": "50369f37-a4f1-4a7c-89dd-b4ef9a8ebf8b",
|
| 208 |
+
"metadata": {},
|
| 209 |
+
"outputs": [
|
| 210 |
+
{
|
| 211 |
+
"data": {
|
| 212 |
+
"text/plain": [
|
| 213 |
+
"(312860, 4, 64, 64)"
|
| 214 |
+
]
|
| 215 |
+
},
|
| 216 |
+
"execution_count": 6,
|
| 217 |
+
"metadata": {},
|
| 218 |
+
"output_type": "execute_result"
|
| 219 |
+
}
|
| 220 |
+
],
|
| 221 |
+
"source": [
|
| 222 |
+
"embeddings.shape"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "code",
|
| 227 |
+
"execution_count": 7,
|
| 228 |
+
"id": "93f1ea7b-cbcd-49c3-a7c7-4ea26012f9b3",
|
| 229 |
+
"metadata": {},
|
| 230 |
+
"outputs": [
|
| 231 |
+
{
|
| 232 |
+
"name": "stdout",
|
| 233 |
+
"output_type": "stream",
|
| 234 |
+
"text": [
|
| 235 |
+
"CPU times: user 0 ns, sys: 10.3 s, total: 10.3 s\n",
|
| 236 |
+
"Wall time: 10.3 s\n"
|
| 237 |
+
]
|
| 238 |
+
}
|
| 239 |
+
],
|
| 240 |
+
"source": [
|
| 241 |
+
"%%time\n",
|
| 242 |
+
"with open('vae_embeddings.npy', 'wb') as f:\n",
|
| 243 |
+
" np.save(f, embeddings)"
|
| 244 |
+
]
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"cell_type": "code",
|
| 248 |
+
"execution_count": null,
|
| 249 |
+
"id": "2b316682-f5cc-44d7-a8ed-f1da9b6c3089",
|
| 250 |
+
"metadata": {},
|
| 251 |
+
"outputs": [],
|
| 252 |
+
"source": []
|
| 253 |
+
}
|
| 254 |
+
],
|
| 255 |
+
"metadata": {
|
| 256 |
+
"kernelspec": {
|
| 257 |
+
"display_name": "Python 3",
|
| 258 |
+
"language": "python",
|
| 259 |
+
"name": "python3"
|
| 260 |
+
},
|
| 261 |
+
"language_info": {
|
| 262 |
+
"codemirror_mode": {
|
| 263 |
+
"name": "ipython",
|
| 264 |
+
"version": 3
|
| 265 |
+
},
|
| 266 |
+
"file_extension": ".py",
|
| 267 |
+
"mimetype": "text/x-python",
|
| 268 |
+
"name": "python",
|
| 269 |
+
"nbconvert_exporter": "python",
|
| 270 |
+
"pygments_lexer": "ipython3",
|
| 271 |
+
"version": "3.9.5"
|
| 272 |
+
}
|
| 273 |
+
},
|
| 274 |
+
"nbformat": 4,
|
| 275 |
+
"nbformat_minor": 5
|
| 276 |
+
}
|