Upload Content/custom_data.yaml
Browse files- Content/custom_data.yaml +22 -0
Content/custom_data.yaml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# YOLOv5 π by Ultralytics, GPL-3.0 license
|
| 2 |
+
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
| 3 |
+
# Example usage: python train.py --data coco128.yaml
|
| 4 |
+
# parent
|
| 5 |
+
# βββ yolov5
|
| 6 |
+
# βββ datasets
|
| 7 |
+
# βββ coco128 β downloads here
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
| 11 |
+
#path: ../datasets/coco128 # dataset root dir
|
| 12 |
+
train: ../images/train # train images (relative to 'path') 128 images
|
| 13 |
+
val: ../images/val # val images (relative to 'path') 128 images
|
| 14 |
+
test: # test images (optional)
|
| 15 |
+
|
| 16 |
+
# Classes
|
| 17 |
+
nc: 3 # number of classes
|
| 18 |
+
names: ['BJP','Congress','AAP'] # class names
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Download script/URL (optional)
|
| 22 |
+
download: https://ultralytics.com/assets/coco128.zip
|