Spaces:
Sleeping
Sleeping
File size: 8,397 Bytes
4151903 55750be 4151903 fffb78c c6914e7 4151903 fc7b4e3 4151903 55750be 4151903 55750be fffb78c 55750be fffb78c c6914e7 fffb78c 55750be 4151903 c0b713d 3b1a54d 4151903 fffb78c 4151903 fffb78c 4151903 3b1a54d 55750be 3b1a54d fffb78c 3b1a54d 4151903 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d fffb78c 3b1a54d 55750be 4151903 683b0a0 4151903 3b1a54d 683b0a0 4151903 55750be c0b713d 4151903 c0b713d 26c02e3 c0b713d f5ffb8a c0b713d f5ffb8a c0b713d f5ffb8a c0b713d a0b4a31 489d5dc 55750be c0b713d a0b4a31 c0b713d 489d5dc 4151903 a0b8bba 683b0a0 fffb78c 4151903 c0b713d fffb78c 4151903 683b0a0 4151903 683b0a0 a0b4a31 683b0a0 4151903 fffb78c 4151903 fffb78c 4151903 3b1a54d 4151903 55750be 3b1a54d fc7b4e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import os, re, types, traceback, torch, gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from IndicTransToolkit import IndicProcessor
import spacy
# --------------------- Device ---------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# --------------------- Languages ------------------
SRC_CODE = "eng_Latn"
HI_CODE = "hin_Deva"
TE_CODE = "tel_Telu"
ip = IndicProcessor(inference=True)
# --------------------- Sentence Splitting (spaCy) ---------------------
nlp = spacy.load("en_core_web_sm")
def split_into_sentences(text):
"""Split English text into sentences using spaCy."""
doc = nlp(text.strip())
return [sent.text.strip() for sent in doc.sents if sent.text.strip()]
# --------------------- Cleanup Helper ---------------------
def clean_translation(text):
"""Remove unresolved placeholder tags such as <ID1>, <ID2>."""
return re.sub(r"<ID\d+>", "", text).strip()
# --------------------- Model Loader ---------------------
MODELS = {
"Default (Public)": "law-ai/InLegalTrans-En2Indic-1B",
"Fine-tuned (Private)": "SagarVelamuri/InLegalTrans-En2Indic-FineTuned-Tel-Hin"
}
_model_cache = {}
def load_model(model_name: str):
if model_name in _model_cache:
return _model_cache[model_name]
token = os.getenv("hf_token")
tok = AutoTokenizer.from_pretrained(
"ai4bharat/indictrans2-en-indic-1B",
trust_remote_code=True, use_fast=True
)
mdl = AutoModelForSeq2SeqLM.from_pretrained(
model_name, trust_remote_code=True,
low_cpu_mem_usage=True, dtype=dtype, token=token
).to(device).eval()
# Fix vocab mismatch if any
try:
mdl.config.vocab_size = mdl.get_output_embeddings().weight.shape[0]
except Exception:
pass
_model_cache[model_name] = (tok, mdl)
return tok, mdl
# --------------------- Streaming Translation ---------------------
@torch.inference_mode()
def translate_dual_stream(text, model_choice, num_beams, max_new):
"""Generator that yields progressive Hindi & Telugu translations one sentence at a time."""
if not text or not text.strip():
yield "", ""
return
tok, mdl = load_model(MODELS[model_choice])
sentences = split_into_sentences(text)
hi_acc, te_acc = [], []
# Yield empty for immediate UI update
yield "", ""
for i, sentence in enumerate(sentences, 1):
# --- Hindi Translation ---
try:
batch_hi = ip.preprocess_batch([sentence], src_lang=SRC_CODE, tgt_lang=HI_CODE)
enc_hi = tok(batch_hi, max_length=256, truncation=True, padding=True, return_tensors="pt").to(device)
out_hi = mdl.generate(
**enc_hi,
max_length=int(max_new),
num_beams=int(num_beams),
do_sample=False,
early_stopping=True,
no_repeat_ngram_size=3,
use_cache=False
)
dec_hi = tok.batch_decode(out_hi, skip_special_tokens=True, clean_up_tokenization_spaces=True)
post_hi = ip.postprocess_batch(dec_hi, lang=HI_CODE)
hi_acc.append(clean_translation(post_hi[0]))
except Exception as e:
hi_acc.append(f"⚠️ Hindi failed (sentence {i}): {e}")
# --- Telugu Translation ---
try:
batch_te = ip.preprocess_batch([sentence], src_lang=SRC_CODE, tgt_lang=TE_CODE)
enc_te = tok(batch_te, max_length=256, truncation=True, padding=True, return_tensors="pt").to(device)
out_te = mdl.generate(
**enc_te,
max_length=int(max_new),
num_beams=int(num_beams),
do_sample=False,
early_stopping=True,
no_repeat_ngram_size=3,
use_cache=False
)
dec_te = tok.batch_decode(out_te, skip_special_tokens=True, clean_up_tokenization_spaces=True)
post_te = ip.postprocess_batch(dec_te, lang=TE_CODE)
te_acc.append(clean_translation(post_te[0]))
except Exception as e:
te_acc.append(f"⚠️ Telugu failed (sentence {i}): {e}")
# Stream progressive output
yield (" ".join(hi_acc), " ".join(te_acc))
# --------------------- Dark Theme ---------------------
THEME = gr.themes.Soft(
primary_hue="blue", neutral_hue="slate"
).set(
body_background_fill="#0b0f19",
body_text_color="#f3f4f6",
block_background_fill="#111827",
block_border_color="#1f2937",
block_title_text_color="#123456",
button_primary_background_fill="#2563eb",
button_primary_text_color="#ffffff",
)
CUSTOM_CSS = """
/* Header + Panels */
#hdr { text-align:center; padding:16px; }
#hdr h1 { font-size:24px; font-weight:700; color:#f9fafb; margin:0; }
#hdr p { font-size:14px; color:#9ca3af; margin-top:4px; }
.panel { border:1px solid #1f2937; border-radius:10px; padding:12px; background:#111827; box-shadow:0 1px 2px rgba(0,0,0,0.4);}
.panel h2 { font-size:16px; font-weight:600; margin-bottom:6px; color:#f3f4f6; }
/* Inputs */
textarea { background:#0b0f19 !important; color:#f9fafb !important; border-radius:8px !important; border:1px solid #374151 !important; font-size:15px !important; line-height:1.55; }
button { border-radius:8px !important; font-weight:600 !important; }
/* Make all component labels readable on dark bg */
.gradio-container label,
.gradio-container .label,
.gradio-container .block-title,
.gradio-container .prose h2,
.gradio-container .prose h3 {
color:#093999 !important;
}
/* --- Dropdown: dark text on white field/menu --- */
#model_dd .wrap,
#model_dd .container {
background:#111827 !important;
border:1px solid #374151 !important;
border-radius:8px !important;
}
#model_dd input,
#model_dd .value,
#model_dd ::placeholder,
#model_dd select,
#model_dd option {
color: #ffffff!important; /* dark text */
background:#111827 !important;
}
#model_dd .options,
#model_dd .options .item {
background:#111827 !important;
color: #ffffff !important;
}
#model_dd label { /* the component's own label */
color:#efe4b0 !important;
}
/* Sliders: keep labels visible */
.gradio-container .range-block label,
.gradio-container .gr-slider label {
color:#efe4b0 !important;
}
"""
# --------------------- UI ---------------------
with gr.Blocks(theme=THEME, css=CUSTOM_CSS, title="EN → HI/TE Translator") as demo:
with gr.Group(elem_id="hdr"):
gr.Markdown("<h1>English → Hindi & Telugu Translator</h1>")
gr.Markdown("<p>IndicTrans2 with simplified preprocessing and sentence-wise translation</p>")
model_choice = gr.Dropdown(
label="Choose Model",
choices=list(MODELS.keys()),
value="Default (Public)",
elem_id="model_dd"
)
with gr.Row():
with gr.Column(scale=2):
with gr.Group(elem_classes="panel"):
gr.Markdown("<h2>English Input</h2>")
src = gr.Textbox(lines=12, placeholder="Enter English...", show_label=False)
with gr.Row():
translate_btn = gr.Button("Translate", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=2):
with gr.Group(elem_classes="panel"):
gr.Markdown("<h2>Hindi Translation</h2>")
hi_out = gr.Textbox(lines=6, show_copy_button=True, show_label=False)
with gr.Group(elem_classes="panel"):
gr.Markdown("<h2>Telugu Translation</h2>")
te_out = gr.Textbox(lines=6, show_copy_button=True, show_label=False)
with gr.Column(scale=1):
with gr.Group(elem_classes="panel"):
gr.Markdown("<h2>Settings</h2>")
num_beams = gr.Slider(1, 8, value=4, step=1, label="Beam Search", elem_id="model_dd")
max_new = gr.Slider(32, 512, value=128, step=16, label="Max New Tokens", elem_id="model_dd")
# Stream generator connection
translate_btn.click(
translate_dual_stream,
inputs=[src, model_choice, num_beams, max_new],
outputs=[hi_out, te_out]
)
clear_btn.click(lambda: ("", "", ""), outputs=[src, hi_out, te_out])
# Enable queue for streaming
demo.queue(max_size=48).launch()
|