Spaces:
Sleeping
Sleeping
First trial
Browse files- Dockerfile +13 -0
- __pycache__/translator_app.cpython-311.pyc +0 -0
- requirements.txt +5 -0
- translator_app.py +155 -0
Dockerfile
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
RUN useradd -m -u 1000 user
|
| 4 |
+
USER user
|
| 5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 6 |
+
|
| 7 |
+
WORKDIR /app
|
| 8 |
+
|
| 9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 11 |
+
|
| 12 |
+
COPY --chown=user . /app
|
| 13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
__pycache__/translator_app.cpython-311.pyc
ADDED
|
Binary file (7.82 kB). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
numpy
|
| 4 |
+
Pillow
|
| 5 |
+
torch
|
translator_app.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py — EN→BN MT API (cleaned)
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import torch
|
| 5 |
+
from typing import List, Optional
|
| 6 |
+
from fastapi import FastAPI, HTTPException
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware # optional
|
| 8 |
+
from pydantic import BaseModel, Field
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 10 |
+
|
| 11 |
+
# -------------------------
|
| 12 |
+
# Device + model name (COPIED)
|
| 13 |
+
# -------------------------
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
mt_pretrained_model_name = "shhossain/opus-mt-en-to-bn"
|
| 16 |
+
|
| 17 |
+
# -------------------------
|
| 18 |
+
# Load tokenizer/model with clear error if it fails
|
| 19 |
+
# -------------------------
|
| 20 |
+
try:
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(mt_pretrained_model_name)
|
| 22 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(mt_pretrained_model_name).to(device)
|
| 23 |
+
model.eval()
|
| 24 |
+
except Exception as e:
|
| 25 |
+
raise RuntimeError(f"Failed to load model/tokenizer '{mt_pretrained_model_name}': {e}")
|
| 26 |
+
|
| 27 |
+
# Optional: be gentle on CPU-only machines
|
| 28 |
+
torch.set_num_threads(max(1, (os.cpu_count() or 1)))
|
| 29 |
+
|
| 30 |
+
# -------------------------
|
| 31 |
+
# FastAPI app + (optional) CORS
|
| 32 |
+
# -------------------------
|
| 33 |
+
app = FastAPI(title="EN→BN MT API", version="1.0.0")
|
| 34 |
+
|
| 35 |
+
# If you’ll call from a browser (localhost dev or a web app), enable CORS:
|
| 36 |
+
app.add_middleware(
|
| 37 |
+
CORSMiddleware,
|
| 38 |
+
allow_origins=["*"], # replace with your domain(s) in production
|
| 39 |
+
allow_credentials=True,
|
| 40 |
+
allow_methods=["*"],
|
| 41 |
+
allow_headers=["*"],
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# -------------------------
|
| 45 |
+
# Schemas (COPIED/NEW mix)
|
| 46 |
+
# -------------------------
|
| 47 |
+
class TranslateIn(BaseModel):
|
| 48 |
+
text: str = Field(..., description="English sentence")
|
| 49 |
+
max_new_tokens: int = Field(128, ge=1, le=512)
|
| 50 |
+
num_beams: int = Field(4, ge=1, le=10)
|
| 51 |
+
do_sample: bool = Field(False, description="Use sampling instead of pure beam search")
|
| 52 |
+
temperature: Optional[float] = Field(1.0, ge=0.1, le=5.0)
|
| 53 |
+
top_p: Optional[float] = Field(1.0, ge=0.1, le=1.0)
|
| 54 |
+
|
| 55 |
+
class TranslateOut(BaseModel):
|
| 56 |
+
translation: str
|
| 57 |
+
|
| 58 |
+
class BatchTranslateIn(BaseModel):
|
| 59 |
+
texts: List[str] = Field(..., description="List of English sentences")
|
| 60 |
+
max_new_tokens: int = Field(128, ge=1, le=512)
|
| 61 |
+
num_beams: int = Field(4, ge=1, le=10)
|
| 62 |
+
do_sample: bool = Field(False)
|
| 63 |
+
temperature: Optional[float] = Field(1.0, ge=0.1, le=5.0)
|
| 64 |
+
top_p: Optional[float] = Field(1.0, ge=0.1, le=1.0)
|
| 65 |
+
|
| 66 |
+
class BatchTranslateOut(BaseModel):
|
| 67 |
+
translations: List[str]
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
MAX_INPUT_CHARS = 2000
|
| 71 |
+
|
| 72 |
+
def generate_translation(
|
| 73 |
+
inputs: List[str],
|
| 74 |
+
max_new_tokens: int,
|
| 75 |
+
num_beams: int,
|
| 76 |
+
do_sample: bool,
|
| 77 |
+
temperature: Optional[float],
|
| 78 |
+
top_p: Optional[float],
|
| 79 |
+
) -> List[str]:
|
| 80 |
+
# input length guard
|
| 81 |
+
for s in inputs:
|
| 82 |
+
if len(s) > MAX_INPUT_CHARS:
|
| 83 |
+
raise ValueError(f"Input too long (> {MAX_INPUT_CHARS} chars).")
|
| 84 |
+
|
| 85 |
+
batch = tokenizer(
|
| 86 |
+
inputs,
|
| 87 |
+
return_tensors="pt",
|
| 88 |
+
padding=True,
|
| 89 |
+
truncation=True
|
| 90 |
+
).to(device)
|
| 91 |
+
|
| 92 |
+
gen_kwargs = {
|
| 93 |
+
"max_new_tokens": max_new_tokens,
|
| 94 |
+
"num_beams": num_beams,
|
| 95 |
+
"do_sample": do_sample,
|
| 96 |
+
}
|
| 97 |
+
if do_sample:
|
| 98 |
+
if temperature is not None:
|
| 99 |
+
gen_kwargs["temperature"] = float(temperature)
|
| 100 |
+
if top_p is not None:
|
| 101 |
+
gen_kwargs["top_p"] = float(top_p)
|
| 102 |
+
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
outputs = model.generate(**batch, **gen_kwargs)
|
| 105 |
+
|
| 106 |
+
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
@app.get("/greet")
|
| 110 |
+
def greet():
|
| 111 |
+
return {
|
| 112 |
+
"message": "Welcome to EN→BN MT API",
|
| 113 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu",
|
| 114 |
+
"model": mt_pretrained_model_name,
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
@app.post("/translate", response_model=TranslateOut)
|
| 118 |
+
def translate(payload: TranslateIn):
|
| 119 |
+
try:
|
| 120 |
+
out = generate_translation(
|
| 121 |
+
[payload.text],
|
| 122 |
+
payload.max_new_tokens,
|
| 123 |
+
payload.num_beams,
|
| 124 |
+
payload.do_sample,
|
| 125 |
+
payload.temperature,
|
| 126 |
+
payload.top_p,
|
| 127 |
+
)[0]
|
| 128 |
+
return {"translation": out}
|
| 129 |
+
except Exception as e:
|
| 130 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 131 |
+
|
| 132 |
+
@app.post("/translate_batch", response_model=BatchTranslateOut)
|
| 133 |
+
def translate_batch(payload: BatchTranslateIn):
|
| 134 |
+
try:
|
| 135 |
+
if not payload.texts:
|
| 136 |
+
raise ValueError("texts list is empty.")
|
| 137 |
+
outs = generate_translation(
|
| 138 |
+
payload.texts,
|
| 139 |
+
payload.max_new_tokens,
|
| 140 |
+
payload.num_beams,
|
| 141 |
+
payload.do_sample,
|
| 142 |
+
payload.temperature,
|
| 143 |
+
payload.top_p,
|
| 144 |
+
)
|
| 145 |
+
return {"translations": outs}
|
| 146 |
+
except Exception as e:
|
| 147 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
if __name__ == "__main__":
|
| 151 |
+
if __name__ == "__main__":
|
| 152 |
+
import uvicorn
|
| 153 |
+
|
| 154 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
|
| 155 |
+
|