File size: 5,866 Bytes
9e0d3ce
 
 
 
 
 
 
559af61
9e0d3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""
News API tool for financial news gathering
Fetches recent news articles about companies/tickers
"""

from newsapi import NewsApiClient
from datetime import datetime, timedelta
from typing import List, Optional, Dict
import logging

from ..core.types import NewsArticle
from ..core.config import config

logger = logging.getLogger(__name__)


class NewsAPITool:
    """
    Fetches financial news using NewsAPI
    Provides recent articles for sentiment and trend analysis
    """

    def __init__(self, api_key: Optional[str] = None):
        self.api_key = api_key or config.market.news_api_key
        if not self.api_key:
            logger.warning("NewsAPI key not provided, news features will be limited")
            self.client = None
        else:
            self.client = NewsApiClient(api_key=self.api_key)

    def get_news(
        self,
        ticker: str,
        company_name: Optional[str] = None,
        days_back: int = 7,
        max_articles: int = 10,
    ) -> List[NewsArticle]:
        """
        Get recent news articles for a company

        Args:
            ticker: Stock ticker symbol
            company_name: Company name for better search
            days_back: Number of days to look back
            max_articles: Maximum number of articles to return

        Returns:
            List of NewsArticle objects
        """
        if not self.client:
            logger.warning("NewsAPI client not initialized")
            return []

        try:
            logger.info(f"Fetching news for {ticker}, {days_back} days back")

            # Build search query
            search_query = f'({ticker}'
            if company_name:
                search_query += f' OR "{company_name}"'
            search_query += ') AND (stock OR finance OR earnings OR market)'

            # Date range
            end_date = datetime.now()
            start_date = end_date - timedelta(days=days_back)

            # Fetch articles
            response = self.client.get_everything(
                q=search_query,
                language="en",
                from_param=start_date.strftime("%Y-%m-%d"),
                to=end_date.strftime("%Y-%m-%d"),
                sort_by="relevancy",
                page_size=max_articles,
            )

            if response["status"] != "ok":
                logger.error(f"NewsAPI error: {response.get('message', 'Unknown error')}")
                return []

            # Convert to NewsArticle objects
            articles = []
            for article_data in response.get("articles", []):
                try:
                    article = NewsArticle(
                        title=article_data.get("title", "No title"),
                        source=article_data.get("source", {}).get("name", "Unknown"),
                        published_at=datetime.fromisoformat(
                            article_data.get("publishedAt", "").replace("Z", "+00:00")
                        ),
                        content=article_data.get("content") or article_data.get("description", ""),
                        url=article_data.get("url", ""),
                    )
                    articles.append(article)
                except Exception as e:
                    logger.warning(f"Error parsing article: {str(e)}")
                    continue

            logger.info(f"Retrieved {len(articles)} articles for {ticker}")
            return articles

        except Exception as e:
            logger.error(f"Error fetching news: {str(e)}")
            return []

    def get_news_summary(
        self, ticker: str, company_name: Optional[str] = None
    ) -> str:
        """
        Get a text summary of recent news

        Args:
            ticker: Stock ticker
            company_name: Company name

        Returns:
            Formatted string of news summaries
        """
        articles = self.get_news(ticker, company_name, days_back=7, max_articles=5)

        if not articles:
            return f"No recent news found for {ticker}"

        summary = f"Recent News for {ticker}:\n\n"
        for i, article in enumerate(articles, 1):
            summary += f"{i}. {article.title}\n"
            summary += f"   Source: {article.source} | {article.published_at.strftime('%Y-%m-%d')}\n"
            summary += f"   {article.content[:200]}...\n\n"

        return summary

    def get_sentiment_indicators(self, articles: List[NewsArticle]) -> Dict[str, int]:
        """
        Get basic sentiment indicators from article titles/content

        Args:
            articles: List of news articles

        Returns:
            Dictionary with positive/negative/neutral counts
        """
        # Simple keyword-based sentiment (can be enhanced with ML)
        positive_keywords = [
            "growth",
            "profit",
            "gain",
            "surge",
            "rally",
            "beat",
            "outperform",
            "success",
            "strong",
            "upgrade",
        ]
        negative_keywords = [
            "loss",
            "decline",
            "fall",
            "miss",
            "downgrade",
            "warning",
            "risk",
            "concern",
            "weak",
            "drop",
        ]

        sentiment_counts = {"positive": 0, "negative": 0, "neutral": 0}

        for article in articles:
            text = (article.title + " " + article.content).lower()

            pos_count = sum(1 for kw in positive_keywords if kw in text)
            neg_count = sum(1 for kw in negative_keywords if kw in text)

            if pos_count > neg_count:
                sentiment_counts["positive"] += 1
            elif neg_count > pos_count:
                sentiment_counts["negative"] += 1
            else:
                sentiment_counts["neutral"] += 1

        return sentiment_counts