Spaces:
Sleeping
Sleeping
File size: 4,835 Bytes
9e0d3ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
"""
Component-based analysis of SEC filings
Identifies and analyzes key sections: Risk, Strategy, Financial Performance, Operations
"""
from typing import Dict, List
class ComponentAnalyzer:
"""
Identifies and categorizes different components of SEC filings
Each component has specific keywords for identification
"""
def __init__(self):
self.components = {
"financial_performance": {
"keywords": [
"revenue",
"net income",
"earnings",
"profit",
"loss",
"cash flow",
"operating income",
"EBITDA",
"gross margin",
"operating margin",
"financial results",
"fiscal year",
"quarter",
"YoY",
"year-over-year",
],
"weight": 1.0,
},
"risk_factors": {
"keywords": [
"risk",
"uncertainty",
"challenge",
"threat",
"adverse",
"volatile",
"fluctuation",
"litigation",
"regulatory",
"competition",
"competitive pressure",
"market condition",
"economic condition",
"material adverse effect",
],
"weight": 1.2, # Higher weight for risk analysis
},
"business_strategy": {
"keywords": [
"strategy",
"strategic",
"initiative",
"growth",
"expansion",
"acquisition",
"partnership",
"innovation",
"competitive advantage",
"market opportunity",
"business model",
"long-term",
"investment",
"R&D",
"research and development",
],
"weight": 1.0,
},
"operations": {
"keywords": [
"operations",
"operational",
"production",
"capacity",
"efficiency",
"supply chain",
"customers",
"users",
"daily active users",
"engagement",
"platform",
"infrastructure",
"employee",
"workforce",
],
"weight": 0.9,
},
}
def identify_component(self, text: str) -> List[str]:
"""
Identify which components a text snippet belongs to
Args:
text: Text snippet to analyze
Returns:
List of component names that match
"""
text_lower = text.lower()
matched_components = []
for component_name, config in self.components.items():
# Check if any keywords are present
if any(keyword.lower() in text_lower for keyword in config["keywords"]):
matched_components.append(component_name)
return matched_components if matched_components else ["general"]
def categorize_texts(self, texts: List[str]) -> Dict[str, List[str]]:
"""
Categorize a list of text segments by component
Args:
texts: List of text segments
Returns:
Dictionary mapping component names to text lists
"""
categorized = {component: [] for component in self.components.keys()}
categorized["general"] = []
for text in texts:
components = self.identify_component(text)
for component in components:
categorized[component].append(text)
# Remove empty categories
return {k: v for k, v in categorized.items() if v}
def get_component_weight(self, component_name: str) -> float:
"""Get the importance weight for a component"""
return self.components.get(component_name, {}).get("weight", 1.0)
def get_risk_keywords(self) -> List[str]:
"""Get all risk-related keywords for focused analysis"""
return self.components["risk_factors"]["keywords"]
def get_financial_keywords(self) -> List[str]:
"""Get all financial-related keywords"""
return self.components["financial_performance"]["keywords"]
|