Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers_helper.hf_login import login
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
| 6 |
+
|
| 7 |
import gradio as gr
|
| 8 |
+
import torch
|
| 9 |
+
import traceback
|
| 10 |
+
import einops
|
| 11 |
+
import safetensors.torch as sf
|
| 12 |
+
import numpy as np
|
| 13 |
+
import math
|
| 14 |
+
import spaces
|
| 15 |
+
|
| 16 |
+
from PIL import Image
|
| 17 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
| 18 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
| 19 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
| 20 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
| 21 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
| 22 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
| 23 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
| 24 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
| 25 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
| 26 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
| 27 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
| 28 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
| 32 |
+
high_vram = free_mem_gb > 60
|
| 33 |
+
|
| 34 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
| 35 |
+
print(f'High-VRAM Mode: {high_vram}')
|
| 36 |
+
|
| 37 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
| 38 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
| 39 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
| 40 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
| 41 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
| 42 |
+
|
| 43 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
| 44 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
| 45 |
+
|
| 46 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
|
| 47 |
+
|
| 48 |
+
vae.eval()
|
| 49 |
+
text_encoder.eval()
|
| 50 |
+
text_encoder_2.eval()
|
| 51 |
+
image_encoder.eval()
|
| 52 |
+
transformer.eval()
|
| 53 |
+
|
| 54 |
+
if not high_vram:
|
| 55 |
+
vae.enable_slicing()
|
| 56 |
+
vae.enable_tiling()
|
| 57 |
+
|
| 58 |
+
transformer.high_quality_fp32_output_for_inference = True
|
| 59 |
+
print('transformer.high_quality_fp32_output_for_inference = True')
|
| 60 |
+
|
| 61 |
+
transformer.to(dtype=torch.bfloat16)
|
| 62 |
+
vae.to(dtype=torch.float16)
|
| 63 |
+
image_encoder.to(dtype=torch.float16)
|
| 64 |
+
text_encoder.to(dtype=torch.float16)
|
| 65 |
+
text_encoder_2.to(dtype=torch.float16)
|
| 66 |
+
|
| 67 |
+
vae.requires_grad_(False)
|
| 68 |
+
text_encoder.requires_grad_(False)
|
| 69 |
+
text_encoder_2.requires_grad_(False)
|
| 70 |
+
image_encoder.requires_grad_(False)
|
| 71 |
+
transformer.requires_grad_(False)
|
| 72 |
+
|
| 73 |
+
if not high_vram:
|
| 74 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
| 75 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
| 76 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
| 77 |
+
else:
|
| 78 |
+
text_encoder.to(gpu)
|
| 79 |
+
text_encoder_2.to(gpu)
|
| 80 |
+
image_encoder.to(gpu)
|
| 81 |
+
vae.to(gpu)
|
| 82 |
+
transformer.to(gpu)
|
| 83 |
+
|
| 84 |
+
stream = AsyncStream()
|
| 85 |
+
|
| 86 |
+
outputs_folder = './outputs/'
|
| 87 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
| 88 |
+
|
| 89 |
+
examples = [
|
| 90 |
+
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm.",],
|
| 91 |
+
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
|
| 92 |
+
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."],
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
def generate_examples(input_image, prompt):
|
| 96 |
+
|
| 97 |
+
t2v=False
|
| 98 |
+
n_prompt=""
|
| 99 |
+
seed=31337
|
| 100 |
+
total_second_length=5
|
| 101 |
+
latent_window_size=9
|
| 102 |
+
steps=25
|
| 103 |
+
cfg=1.0
|
| 104 |
+
gs=10.0
|
| 105 |
+
rs=0.0
|
| 106 |
+
gpu_memory_preservation=6
|
| 107 |
+
use_teacache=True
|
| 108 |
+
mp4_crf=16
|
| 109 |
+
|
| 110 |
+
global stream
|
| 111 |
+
|
| 112 |
+
# assert input_image is not None, 'No input image!'
|
| 113 |
+
if t2v:
|
| 114 |
+
default_height, default_width = 640, 640
|
| 115 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
| 116 |
+
print("No input image provided. Using a blank white image.")
|
| 117 |
+
|
| 118 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
| 119 |
+
|
| 120 |
+
stream = AsyncStream()
|
| 121 |
+
|
| 122 |
+
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
|
| 123 |
+
|
| 124 |
+
output_filename = None
|
| 125 |
+
|
| 126 |
+
while True:
|
| 127 |
+
flag, data = stream.output_queue.next()
|
| 128 |
+
|
| 129 |
+
if flag == 'file':
|
| 130 |
+
output_filename = data
|
| 131 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
| 132 |
+
|
| 133 |
+
if flag == 'progress':
|
| 134 |
+
preview, desc, html = data
|
| 135 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
| 136 |
+
|
| 137 |
+
if flag == 'end':
|
| 138 |
+
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
| 139 |
+
break
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
@torch.no_grad()
|
| 144 |
+
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
| 145 |
+
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
| 146 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
| 147 |
+
|
| 148 |
+
job_id = generate_timestamp()
|
| 149 |
+
|
| 150 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
| 151 |
+
|
| 152 |
+
try:
|
| 153 |
+
# Clean GPU
|
| 154 |
+
if not high_vram:
|
| 155 |
+
unload_complete_models(
|
| 156 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# Text encoding
|
| 160 |
+
|
| 161 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
| 162 |
+
|
| 163 |
+
if not high_vram:
|
| 164 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
| 165 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
| 166 |
+
|
| 167 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
| 168 |
+
|
| 169 |
+
if cfg == 1:
|
| 170 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
| 171 |
+
else:
|
| 172 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
| 173 |
+
|
| 174 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
| 175 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
| 176 |
+
|
| 177 |
+
# Processing input image
|
| 178 |
+
|
| 179 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
| 180 |
+
|
| 181 |
+
H, W, C = input_image.shape
|
| 182 |
+
height, width = find_nearest_bucket(H, W, resolution=640)
|
| 183 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
| 184 |
+
|
| 185 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
| 186 |
+
|
| 187 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
| 188 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
| 189 |
+
|
| 190 |
+
# VAE encoding
|
| 191 |
+
|
| 192 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
| 193 |
+
|
| 194 |
+
if not high_vram:
|
| 195 |
+
load_model_as_complete(vae, target_device=gpu)
|
| 196 |
+
|
| 197 |
+
start_latent = vae_encode(input_image_pt, vae)
|
| 198 |
+
|
| 199 |
+
# CLIP Vision
|
| 200 |
+
|
| 201 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
| 202 |
+
|
| 203 |
+
if not high_vram:
|
| 204 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
| 205 |
+
|
| 206 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
| 207 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
| 208 |
+
|
| 209 |
+
# Dtype
|
| 210 |
+
|
| 211 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
| 212 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
| 213 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
| 214 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
| 215 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
| 216 |
+
|
| 217 |
+
# Sampling
|
| 218 |
+
|
| 219 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
| 220 |
+
|
| 221 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
| 222 |
+
|
| 223 |
+
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
|
| 224 |
+
history_pixels = None
|
| 225 |
+
|
| 226 |
+
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
| 227 |
+
total_generated_latent_frames = 1
|
| 228 |
+
|
| 229 |
+
for section_index in range(total_latent_sections):
|
| 230 |
+
if stream.input_queue.top() == 'end':
|
| 231 |
+
stream.output_queue.push(('end', None))
|
| 232 |
+
return
|
| 233 |
+
|
| 234 |
+
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
|
| 235 |
+
|
| 236 |
+
if not high_vram:
|
| 237 |
+
unload_complete_models()
|
| 238 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
| 239 |
+
|
| 240 |
+
if use_teacache:
|
| 241 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
| 242 |
+
else:
|
| 243 |
+
transformer.initialize_teacache(enable_teacache=False)
|
| 244 |
+
|
| 245 |
+
def callback(d):
|
| 246 |
+
preview = d['denoised']
|
| 247 |
+
preview = vae_decode_fake(preview)
|
| 248 |
+
|
| 249 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 250 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
| 251 |
+
|
| 252 |
+
if stream.input_queue.top() == 'end':
|
| 253 |
+
stream.output_queue.push(('end', None))
|
| 254 |
+
raise KeyboardInterrupt('User ends the task.')
|
| 255 |
+
|
| 256 |
+
current_step = d['i'] + 1
|
| 257 |
+
percentage = int(100.0 * current_step / steps)
|
| 258 |
+
hint = f'Sampling {current_step}/{steps}'
|
| 259 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
|
| 260 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
| 261 |
+
return
|
| 262 |
+
|
| 263 |
+
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
| 264 |
+
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
| 265 |
+
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
| 266 |
+
|
| 267 |
+
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
|
| 268 |
+
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
| 269 |
+
|
| 270 |
+
generated_latents = sample_hunyuan(
|
| 271 |
+
transformer=transformer,
|
| 272 |
+
sampler='unipc',
|
| 273 |
+
width=width,
|
| 274 |
+
height=height,
|
| 275 |
+
frames=latent_window_size * 4 - 3,
|
| 276 |
+
real_guidance_scale=cfg,
|
| 277 |
+
distilled_guidance_scale=gs,
|
| 278 |
+
guidance_rescale=rs,
|
| 279 |
+
# shift=3.0,
|
| 280 |
+
num_inference_steps=steps,
|
| 281 |
+
generator=rnd,
|
| 282 |
+
prompt_embeds=llama_vec,
|
| 283 |
+
prompt_embeds_mask=llama_attention_mask,
|
| 284 |
+
prompt_poolers=clip_l_pooler,
|
| 285 |
+
negative_prompt_embeds=llama_vec_n,
|
| 286 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
| 287 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
| 288 |
+
device=gpu,
|
| 289 |
+
dtype=torch.bfloat16,
|
| 290 |
+
image_embeddings=image_encoder_last_hidden_state,
|
| 291 |
+
latent_indices=latent_indices,
|
| 292 |
+
clean_latents=clean_latents,
|
| 293 |
+
clean_latent_indices=clean_latent_indices,
|
| 294 |
+
clean_latents_2x=clean_latents_2x,
|
| 295 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
| 296 |
+
clean_latents_4x=clean_latents_4x,
|
| 297 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
| 298 |
+
callback=callback,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
| 302 |
+
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
| 303 |
+
|
| 304 |
+
if not high_vram:
|
| 305 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
| 306 |
+
load_model_as_complete(vae, target_device=gpu)
|
| 307 |
+
|
| 308 |
+
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
| 309 |
+
|
| 310 |
+
if history_pixels is None:
|
| 311 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
| 312 |
+
else:
|
| 313 |
+
section_latent_frames = latent_window_size * 2
|
| 314 |
+
overlapped_frames = latent_window_size * 4 - 3
|
| 315 |
+
|
| 316 |
+
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
| 317 |
+
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
| 318 |
+
|
| 319 |
+
if not high_vram:
|
| 320 |
+
unload_complete_models()
|
| 321 |
+
|
| 322 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
| 323 |
+
|
| 324 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
|
| 325 |
+
|
| 326 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
| 327 |
+
|
| 328 |
+
stream.output_queue.push(('file', output_filename))
|
| 329 |
+
except:
|
| 330 |
+
traceback.print_exc()
|
| 331 |
+
|
| 332 |
+
if not high_vram:
|
| 333 |
+
unload_complete_models(
|
| 334 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
stream.output_queue.push(('end', None))
|
| 338 |
+
return
|
| 339 |
+
|
| 340 |
+
def get_duration(input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
| 341 |
+
return total_second_length * 60
|
| 342 |
+
|
| 343 |
+
@spaces.GPU(duration=get_duration)
|
| 344 |
+
def process(input_image, prompt,
|
| 345 |
+
t2v=False,
|
| 346 |
+
n_prompt="",
|
| 347 |
+
seed=31337,
|
| 348 |
+
total_second_length=5,
|
| 349 |
+
latent_window_size=9,
|
| 350 |
+
steps=25,
|
| 351 |
+
cfg=1.0,
|
| 352 |
+
gs=10.0,
|
| 353 |
+
rs=0.0,
|
| 354 |
+
gpu_memory_preservation=6,
|
| 355 |
+
use_teacache=True,
|
| 356 |
+
mp4_crf=16
|
| 357 |
+
):
|
| 358 |
+
global stream
|
| 359 |
+
|
| 360 |
+
# assert input_image is not None, 'No input image!'
|
| 361 |
+
if t2v:
|
| 362 |
+
default_height, default_width = 640, 640
|
| 363 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
| 364 |
+
print("No input image provided. Using a blank white image.")
|
| 365 |
+
else:
|
| 366 |
+
composite_rgba_uint8 = input_image["composite"]
|
| 367 |
+
|
| 368 |
+
# rgb_uint8 will be (H, W, 3), dtype uint8
|
| 369 |
+
rgb_uint8 = composite_rgba_uint8[:, :, :3]
|
| 370 |
+
# mask_uint8 will be (H, W), dtype uint8
|
| 371 |
+
mask_uint8 = composite_rgba_uint8[:, :, 3]
|
| 372 |
+
|
| 373 |
+
# Create background
|
| 374 |
+
h, w = rgb_uint8.shape[:2]
|
| 375 |
+
# White background, (H, W, 3), dtype uint8
|
| 376 |
+
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
|
| 377 |
+
|
| 378 |
+
# Normalize mask to range [0.0, 1.0].
|
| 379 |
+
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
|
| 380 |
+
|
| 381 |
+
# Expand alpha to 3 channels to match RGB images for broadcasting.
|
| 382 |
+
# alpha_mask_float32 will have shape (H, W, 3)
|
| 383 |
+
alpha_mask_float32 = np.stack([alpha_normalized_float32] * 3, axis=2)
|
| 384 |
+
|
| 385 |
+
# alpha blending
|
| 386 |
+
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
|
| 387 |
+
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
|
| 388 |
+
|
| 389 |
+
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
|
| 390 |
+
|
| 391 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
| 392 |
+
|
| 393 |
+
stream = AsyncStream()
|
| 394 |
+
|
| 395 |
+
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
|
| 396 |
+
|
| 397 |
+
output_filename = None
|
| 398 |
+
|
| 399 |
+
while True:
|
| 400 |
+
flag, data = stream.output_queue.next()
|
| 401 |
+
|
| 402 |
+
if flag == 'file':
|
| 403 |
+
output_filename = data
|
| 404 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
| 405 |
+
|
| 406 |
+
if flag == 'progress':
|
| 407 |
+
preview, desc, html = data
|
| 408 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
| 409 |
+
|
| 410 |
+
if flag == 'end':
|
| 411 |
+
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
| 412 |
+
break
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def end_process():
|
| 416 |
+
stream.input_queue.push('end')
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
quick_prompts = [
|
| 420 |
+
'The girl dances gracefully, with clear movements, full of charm.',
|
| 421 |
+
'A character doing some simple body movements.',
|
| 422 |
+
]
|
| 423 |
+
quick_prompts = [[x] for x in quick_prompts]
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
css = make_progress_bar_css()
|
| 427 |
+
block = gr.Blocks(css=css).queue()
|
| 428 |
+
with block:
|
| 429 |
+
gr.Markdown('# FramePack-F1')
|
| 430 |
+
gr.Markdown(f"""### Video diffusion, but feels like image diffusion
|
| 431 |
+
*FramePack F1 - a FramePack model that only predicts future frames from history frames*
|
| 432 |
+
### *beta* FramePack Fill 🖋️- draw a mask over the input image to inpaint the video output
|
| 433 |
+
adapted from the officical code repo [FramePack](https://github.com/lllyasviel/FramePack) by [lllyasviel](lllyasviel/FramePack_F1_I2V_HY_20250503) and [FramePack Studio](https://github.com/colinurbs/FramePack-Studio) 🙌🏻
|
| 434 |
+
""")
|
| 435 |
+
with gr.Row():
|
| 436 |
+
with gr.Column():
|
| 437 |
+
input_image = gr.ImageEditor(type="numpy", label="Image", height=320, brush=gr.Brush(colors=["#ffffff"]))
|
| 438 |
+
prompt = gr.Textbox(label="Prompt", value='')
|
| 439 |
+
t2v = gr.Checkbox(label="do text-to-video", value=False)
|
| 440 |
+
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
| 441 |
+
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
| 442 |
+
|
| 443 |
+
with gr.Row():
|
| 444 |
+
start_button = gr.Button(value="Start Generation")
|
| 445 |
+
end_button = gr.Button(value="End Generation", interactive=False)
|
| 446 |
+
|
| 447 |
+
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=5, value=2, step=0.1)
|
| 448 |
+
with gr.Group():
|
| 449 |
+
with gr.Accordion("Advanced settings", open=False):
|
| 450 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
|
| 451 |
+
|
| 452 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
|
| 453 |
+
seed = gr.Number(label="Seed", value=31337, precision=0)
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
|
| 457 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
|
| 458 |
+
|
| 459 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
|
| 460 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
|
| 461 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
| 462 |
+
|
| 463 |
+
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
| 464 |
+
|
| 465 |
+
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
|
| 466 |
+
|
| 467 |
+
with gr.Column():
|
| 468 |
+
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
| 469 |
+
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
| 470 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
| 471 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
| 472 |
+
|
| 473 |
+
gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>')
|
| 474 |
+
|
| 475 |
+
ips = [input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
|
| 476 |
+
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
| 477 |
+
end_button.click(fn=end_process)
|
| 478 |
+
|
| 479 |
+
# gr.Examples(
|
| 480 |
+
# examples,
|
| 481 |
+
# inputs=[input_image, prompt],
|
| 482 |
+
# outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
|
| 483 |
+
# fn=generate_examples,
|
| 484 |
+
# cache_examples=True
|
| 485 |
+
# )
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
block.launch(share=True, mcp_server=True)
|