Spaces:
Runtime error
Runtime error
Commit
·
bcda822
1
Parent(s):
114fe52
add app file
Browse files- app.py +197 -0
- experiments.json +420 -0
app.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from collections import defaultdict
|
| 3 |
+
import json
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from functools import lru_cache
|
| 6 |
+
|
| 7 |
+
# Load models and experiments
|
| 8 |
+
MODELS = [
|
| 9 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
|
| 10 |
+
"o3-mini-2025-01-31",
|
| 11 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
| 12 |
+
"moonshotai/Moonlight-16B-A3B-Instruct",
|
| 13 |
+
"gpt-4o",
|
| 14 |
+
"claude-3-7-sonnet-20250219",
|
| 15 |
+
"openai/gpt-4.5-preview-2025-02-27"
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
with open("experiments.json") as f:
|
| 19 |
+
experiments = json.load(f)
|
| 20 |
+
|
| 21 |
+
@lru_cache
|
| 22 |
+
def load_details_and_results(model, benchmark, experiment_tag):
|
| 23 |
+
def worker(example):
|
| 24 |
+
example["predictions"] = example["predictions"]
|
| 25 |
+
example["gold"] = example["gold"][0]
|
| 26 |
+
example["metrics"] = example["metrics"]
|
| 27 |
+
return example
|
| 28 |
+
|
| 29 |
+
repo = f"SaylorTwift/details_{model.replace('/', '__')}_private"
|
| 30 |
+
subset = experiments[model]["benchmarks"][benchmark]["subset"].replace("|", "_").replace(":", "_")
|
| 31 |
+
split = experiments[model]["benchmarks"][benchmark]["tags"][experiment_tag].replace("-", "_")
|
| 32 |
+
|
| 33 |
+
details = load_dataset(repo, subset, split=split)
|
| 34 |
+
results = load_dataset(repo, "results", split=split)
|
| 35 |
+
|
| 36 |
+
results = eval(results[0]["results"])
|
| 37 |
+
|
| 38 |
+
columns_to_keep = ['full_prompt', 'gold', 'metrics', 'predictions']
|
| 39 |
+
details = details.select_columns(columns_to_keep)
|
| 40 |
+
details = details.map(worker)
|
| 41 |
+
|
| 42 |
+
return details, results
|
| 43 |
+
|
| 44 |
+
# Load all experiment details
|
| 45 |
+
experiment_details = defaultdict(dict)
|
| 46 |
+
|
| 47 |
+
for model in MODELS:
|
| 48 |
+
for benchmark, benchmark_details in experiments[model]["benchmarks"].items():
|
| 49 |
+
subset = benchmark_details["subset"]
|
| 50 |
+
for experiment_tag in benchmark_details["tags"]:
|
| 51 |
+
details, _ = load_details_and_results(model, benchmark, experiment_tag)
|
| 52 |
+
experiment_details[model][subset] = details
|
| 53 |
+
|
| 54 |
+
def display_model_comparison(selected_models, benchmark, example_index):
|
| 55 |
+
if not selected_models:
|
| 56 |
+
return "Please select at least one model to compare."
|
| 57 |
+
|
| 58 |
+
outputs = []
|
| 59 |
+
for model in selected_models:
|
| 60 |
+
try:
|
| 61 |
+
example = experiment_details[model][benchmark][example_index]
|
| 62 |
+
outputs.append({
|
| 63 |
+
'Model': model.split('/')[-1],
|
| 64 |
+
'Prediction': example['predictions'][0] if example['predictions'] else '',
|
| 65 |
+
'Prompt': example['full_prompt'],
|
| 66 |
+
'Metrics': example['metrics'],
|
| 67 |
+
'Gold': example['gold']
|
| 68 |
+
})
|
| 69 |
+
except (KeyError, IndexError):
|
| 70 |
+
continue
|
| 71 |
+
|
| 72 |
+
if not outputs:
|
| 73 |
+
return "No results found for the selected combination."
|
| 74 |
+
|
| 75 |
+
# Create HTML output with all models
|
| 76 |
+
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n"
|
| 77 |
+
|
| 78 |
+
# Show gold answer at the top with distinct styling
|
| 79 |
+
if outputs:
|
| 80 |
+
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n"
|
| 81 |
+
html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n"
|
| 82 |
+
html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n"
|
| 83 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n"
|
| 84 |
+
html_output += "</div>\n"
|
| 85 |
+
html_output += "</div>\n"
|
| 86 |
+
|
| 87 |
+
for output in outputs:
|
| 88 |
+
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n"
|
| 89 |
+
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"
|
| 90 |
+
|
| 91 |
+
# Format metrics as a clean table
|
| 92 |
+
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
| 93 |
+
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
|
| 94 |
+
metrics = output['Metrics']
|
| 95 |
+
if isinstance(metrics, str):
|
| 96 |
+
metrics = eval(metrics)
|
| 97 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
| 98 |
+
html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n"
|
| 99 |
+
for key, value in metrics.items():
|
| 100 |
+
if isinstance(value, float):
|
| 101 |
+
value = f"{value:.3f}"
|
| 102 |
+
html_output += f"<tr><td style='padding: 5px; border-bottom: 1px solid #ddd;'><strong>{key}</strong></td><td style='padding: 5px; border-bottom: 1px solid #ddd;'>{value}</td></tr>\n"
|
| 103 |
+
html_output += "</table>\n"
|
| 104 |
+
html_output += "</div>\n"
|
| 105 |
+
html_output += "</details>\n\n"
|
| 106 |
+
|
| 107 |
+
# Handle prompt formatting with better styling
|
| 108 |
+
html_output += "<details style='margin-bottom: 15px;'>\n"
|
| 109 |
+
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
|
| 110 |
+
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
| 111 |
+
|
| 112 |
+
prompt_text = output['Prompt']
|
| 113 |
+
if isinstance(prompt_text, list):
|
| 114 |
+
for i, msg in enumerate(prompt_text):
|
| 115 |
+
if isinstance(msg, dict) and 'content' in msg:
|
| 116 |
+
role = msg.get('role', 'message').title()
|
| 117 |
+
html_output += "<div style='margin-bottom: 10px;'>\n"
|
| 118 |
+
html_output += f"<strong>{role}:</strong>\n"
|
| 119 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
| 120 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{msg['content']}</code></pre>\n"
|
| 121 |
+
html_output += "</div>\n"
|
| 122 |
+
html_output += "</div>\n"
|
| 123 |
+
else:
|
| 124 |
+
html_output += "<div style='margin-bottom: 10px;'>\n"
|
| 125 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
| 126 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{json.dumps(msg, indent=2)}</code></pre>\n"
|
| 127 |
+
html_output += "</div>\n"
|
| 128 |
+
html_output += "</div>\n"
|
| 129 |
+
else:
|
| 130 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
| 131 |
+
if isinstance(prompt_text, dict) and 'content' in prompt_text:
|
| 132 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text['content']}</code></pre>\n"
|
| 133 |
+
else:
|
| 134 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n"
|
| 135 |
+
html_output += "</div>\n"
|
| 136 |
+
|
| 137 |
+
html_output += "</div>\n"
|
| 138 |
+
html_output += "</details>\n\n"
|
| 139 |
+
|
| 140 |
+
# Style prediction output - now in a collapsible section
|
| 141 |
+
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
| 142 |
+
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
|
| 143 |
+
# Add word count in a muted style
|
| 144 |
+
word_count = len(output['Prediction'].split())
|
| 145 |
+
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
|
| 146 |
+
html_output += "</summary>\n"
|
| 147 |
+
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
| 148 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
| 149 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{output['Prediction']}</code></pre>\n"
|
| 150 |
+
html_output += "</div>\n"
|
| 151 |
+
html_output += "</div>\n"
|
| 152 |
+
html_output += "</details>\n"
|
| 153 |
+
html_output += "</div>\n\n"
|
| 154 |
+
|
| 155 |
+
html_output += "</div>"
|
| 156 |
+
return html_output
|
| 157 |
+
|
| 158 |
+
# Get unique benchmarks
|
| 159 |
+
available_benchmarks = list(set(
|
| 160 |
+
benchmark
|
| 161 |
+
for model in MODELS
|
| 162 |
+
for benchmark in experiment_details[model].keys()
|
| 163 |
+
))
|
| 164 |
+
|
| 165 |
+
# Create the Gradio interface
|
| 166 |
+
demo = gr.Interface(
|
| 167 |
+
fn=display_model_comparison,
|
| 168 |
+
inputs=[
|
| 169 |
+
gr.Dropdown(
|
| 170 |
+
choices=sorted(MODELS),
|
| 171 |
+
label="Models",
|
| 172 |
+
multiselect=True,
|
| 173 |
+
value=MODELS,
|
| 174 |
+
info="Select models to compare"
|
| 175 |
+
),
|
| 176 |
+
gr.Dropdown(
|
| 177 |
+
choices=sorted(available_benchmarks),
|
| 178 |
+
label="Benchmark",
|
| 179 |
+
value=sorted(available_benchmarks)[0] if available_benchmarks else None,
|
| 180 |
+
info="Choose the evaluation benchmark"
|
| 181 |
+
),
|
| 182 |
+
gr.Number(
|
| 183 |
+
label="Example Index",
|
| 184 |
+
value=0,
|
| 185 |
+
step=1,
|
| 186 |
+
info="Navigate through different examples"
|
| 187 |
+
)
|
| 188 |
+
],
|
| 189 |
+
outputs=gr.HTML(),
|
| 190 |
+
title="Model Generation Comparison",
|
| 191 |
+
description="Compare model outputs across different benchmarks and prompts",
|
| 192 |
+
theme=gr.themes.Soft(),
|
| 193 |
+
css="button { margin: 0 10px; padding: 5px 15px; }"
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
if __name__ == "__main__":
|
| 197 |
+
demo.launch()
|
experiments.json
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"gpt-4o": {
|
| 3 |
+
"display_name": "gpt 4o",
|
| 4 |
+
"provider": "openai",
|
| 5 |
+
"open": false,
|
| 6 |
+
"benchmarks": {
|
| 7 |
+
"math_500": {
|
| 8 |
+
"subset": "lighteval|math_500|0",
|
| 9 |
+
"metrics": [
|
| 10 |
+
"extractive_match"
|
| 11 |
+
],
|
| 12 |
+
"tags": {
|
| 13 |
+
"latest": "2025-02-26T10-14-16.106571"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"gpqa_diamond": {
|
| 17 |
+
"subset": "lighteval|gpqa:diamond|0",
|
| 18 |
+
"metrics": [
|
| 19 |
+
"extractive_match"
|
| 20 |
+
],
|
| 21 |
+
"tags": {
|
| 22 |
+
"latest": "2025-02-26T10-14-16.106571"
|
| 23 |
+
}
|
| 24 |
+
},
|
| 25 |
+
"aime_24": {
|
| 26 |
+
"subset": "lighteval|aime24|0",
|
| 27 |
+
"metrics": [
|
| 28 |
+
"extractive_match"
|
| 29 |
+
],
|
| 30 |
+
"tags": {
|
| 31 |
+
"latest": "2025-02-26T10-14-16.106571"
|
| 32 |
+
}
|
| 33 |
+
},
|
| 34 |
+
"aime_25": {
|
| 35 |
+
"subset": "lighteval|aime25|0",
|
| 36 |
+
"metrics": [
|
| 37 |
+
"extractive_match"
|
| 38 |
+
],
|
| 39 |
+
"tags": {
|
| 40 |
+
"latest": "2025-02-26T10-14-16.106571"
|
| 41 |
+
}
|
| 42 |
+
},
|
| 43 |
+
"ifeval": {
|
| 44 |
+
"subset": "extended|ifeval|0",
|
| 45 |
+
"metrics": [
|
| 46 |
+
"prompt_level_strict_acc"
|
| 47 |
+
],
|
| 48 |
+
"tags": {
|
| 49 |
+
"latest": "2025-02-26T10-14-16.106571"
|
| 50 |
+
}
|
| 51 |
+
}
|
| 52 |
+
}
|
| 53 |
+
},
|
| 54 |
+
"claude-3-7-sonnet-20250219": {
|
| 55 |
+
"display_name": "Claude 3.7 Sonnet",
|
| 56 |
+
"provider": "anthropic",
|
| 57 |
+
"open": false,
|
| 58 |
+
"benchmarks": {
|
| 59 |
+
"math_500": {
|
| 60 |
+
"subset": "lighteval|math_500|0",
|
| 61 |
+
"metrics": [
|
| 62 |
+
"extractive_match"
|
| 63 |
+
],
|
| 64 |
+
"tags": {
|
| 65 |
+
"latest": "2025-02-25T14-35-15.137825"
|
| 66 |
+
}
|
| 67 |
+
},
|
| 68 |
+
"gpqa_diamond": {
|
| 69 |
+
"subset": "lighteval|gpqa:diamond|0",
|
| 70 |
+
"metrics": [
|
| 71 |
+
"extractive_match"
|
| 72 |
+
],
|
| 73 |
+
"tags": {
|
| 74 |
+
"latest": "2025-02-25T12-43-49.294245"
|
| 75 |
+
}
|
| 76 |
+
},
|
| 77 |
+
"aime_24": {
|
| 78 |
+
"subset": "lighteval|aime24|0",
|
| 79 |
+
"metrics": [
|
| 80 |
+
"extractive_match"
|
| 81 |
+
],
|
| 82 |
+
"tags": {
|
| 83 |
+
"latest": "2025-02-25T12-37-52.771787"
|
| 84 |
+
}
|
| 85 |
+
},
|
| 86 |
+
"aime_25": {
|
| 87 |
+
"subset": "lighteval|aime25|0",
|
| 88 |
+
"metrics": [
|
| 89 |
+
"extractive_match"
|
| 90 |
+
],
|
| 91 |
+
"tags": {
|
| 92 |
+
"latest": "2025-02-25T12-37-52.771787"
|
| 93 |
+
}
|
| 94 |
+
},
|
| 95 |
+
"ifeval": {
|
| 96 |
+
"subset": "extended|ifeval|0",
|
| 97 |
+
"metrics": [
|
| 98 |
+
"prompt_level_strict_acc"
|
| 99 |
+
],
|
| 100 |
+
"tags": {
|
| 101 |
+
"latest": "2025-02-25T12-24-45.750753"
|
| 102 |
+
}
|
| 103 |
+
}
|
| 104 |
+
}
|
| 105 |
+
},
|
| 106 |
+
"o3-mini-2025-01-31": {
|
| 107 |
+
"display_name": "o3-mini",
|
| 108 |
+
"provider": "openai",
|
| 109 |
+
"open": false,
|
| 110 |
+
"benchmarks": {
|
| 111 |
+
"math_500": {
|
| 112 |
+
"subset": "lighteval|math_500|0",
|
| 113 |
+
"metrics": [
|
| 114 |
+
"extractive_match"
|
| 115 |
+
],
|
| 116 |
+
"tags": {
|
| 117 |
+
"latest": "2025-02-26T11-37-01.193437"
|
| 118 |
+
}
|
| 119 |
+
},
|
| 120 |
+
"gpqa_diamond": {
|
| 121 |
+
"subset": "lighteval|gpqa:diamond|0",
|
| 122 |
+
"metrics": [
|
| 123 |
+
"extractive_match"
|
| 124 |
+
],
|
| 125 |
+
"tags": {
|
| 126 |
+
"latest": "2025-02-26T11-37-01.193437"
|
| 127 |
+
}
|
| 128 |
+
},
|
| 129 |
+
"aime_24": {
|
| 130 |
+
"subset": "lighteval|aime24|0",
|
| 131 |
+
"metrics": [
|
| 132 |
+
"extractive_match"
|
| 133 |
+
],
|
| 134 |
+
"tags": {
|
| 135 |
+
"latest": "2025-02-26T11-37-01.193437"
|
| 136 |
+
}
|
| 137 |
+
},
|
| 138 |
+
"aime_25": {
|
| 139 |
+
"subset": "lighteval|aime25|0",
|
| 140 |
+
"metrics": [
|
| 141 |
+
"extractive_match"
|
| 142 |
+
],
|
| 143 |
+
"tags": {
|
| 144 |
+
"latest": "2025-02-26T11-37-01.193437"
|
| 145 |
+
}
|
| 146 |
+
},
|
| 147 |
+
"ifeval": {
|
| 148 |
+
"subset": "extended|ifeval|0",
|
| 149 |
+
"metrics": [
|
| 150 |
+
"prompt_level_strict_acc"
|
| 151 |
+
],
|
| 152 |
+
"tags": {
|
| 153 |
+
"latest": "2025-02-26T11-37-01.193437"
|
| 154 |
+
}
|
| 155 |
+
}
|
| 156 |
+
}
|
| 157 |
+
},
|
| 158 |
+
"moonshotai/Moonlight-16B-A3B-Instruct": {
|
| 159 |
+
"display_name": "Moonlight",
|
| 160 |
+
"provider": "moonshotai",
|
| 161 |
+
"open": true,
|
| 162 |
+
"benchmarks": {
|
| 163 |
+
"math_500": {
|
| 164 |
+
"subset": "lighteval|math_500|0",
|
| 165 |
+
"metrics": [
|
| 166 |
+
"extractive_match"
|
| 167 |
+
],
|
| 168 |
+
"tags": {
|
| 169 |
+
"latest": "2025_02_26T13_32_06.104265"
|
| 170 |
+
}
|
| 171 |
+
},
|
| 172 |
+
"gpqa_diamond": {
|
| 173 |
+
"subset": "lighteval|gpqa:diamond|0",
|
| 174 |
+
"metrics": [
|
| 175 |
+
"extractive_match"
|
| 176 |
+
],
|
| 177 |
+
"tags": {
|
| 178 |
+
"latest": "2025_02_26T13_32_06.104265"
|
| 179 |
+
}
|
| 180 |
+
},
|
| 181 |
+
"aime_24": {
|
| 182 |
+
"subset": "lighteval|aime24|0",
|
| 183 |
+
"metrics": [
|
| 184 |
+
"extractive_match"
|
| 185 |
+
],
|
| 186 |
+
"tags": {
|
| 187 |
+
"latest": "2025_02_26T13_32_06.104265"
|
| 188 |
+
}
|
| 189 |
+
},
|
| 190 |
+
"aime_25": {
|
| 191 |
+
"subset": "lighteval|aime25|0",
|
| 192 |
+
"metrics": [
|
| 193 |
+
"extractive_match"
|
| 194 |
+
],
|
| 195 |
+
"tags": {
|
| 196 |
+
"latest": "2025_02_26T13_32_06.104265"
|
| 197 |
+
}
|
| 198 |
+
},
|
| 199 |
+
"ifeval": {
|
| 200 |
+
"subset": "extended|ifeval|0",
|
| 201 |
+
"metrics": [
|
| 202 |
+
"prompt_level_strict_acc"
|
| 203 |
+
],
|
| 204 |
+
"tags": {
|
| 205 |
+
"latest": "2025_02_26T13_32_06.104265"
|
| 206 |
+
}
|
| 207 |
+
}
|
| 208 |
+
}
|
| 209 |
+
},
|
| 210 |
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
| 211 |
+
"display_name": "Llama 3.3 70B",
|
| 212 |
+
"provider": "meta",
|
| 213 |
+
"open": true,
|
| 214 |
+
"benchmarks": {
|
| 215 |
+
"math_500": {
|
| 216 |
+
"subset": "lighteval|math_500|0",
|
| 217 |
+
"metrics": ["extractive_match"],
|
| 218 |
+
"tags": {
|
| 219 |
+
"latest": "2025-02-26T17-13-13.448521"
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"gpqa_diamond": {
|
| 223 |
+
"subset": "lighteval|gpqa:diamond|0",
|
| 224 |
+
"metrics": ["extractive_match"],
|
| 225 |
+
"tags": {
|
| 226 |
+
"latest": "2025-02-26T17-13-13.448521"
|
| 227 |
+
}
|
| 228 |
+
},
|
| 229 |
+
"aime_24": {
|
| 230 |
+
"subset": "lighteval|aime24|0",
|
| 231 |
+
"metrics": ["extractive_match"],
|
| 232 |
+
"tags": {
|
| 233 |
+
"latest": "2025-02-26T17-13-13.448521"
|
| 234 |
+
}
|
| 235 |
+
},
|
| 236 |
+
"aime_25": {
|
| 237 |
+
"subset": "lighteval|aime25|0",
|
| 238 |
+
"metrics": ["extractive_match"],
|
| 239 |
+
"tags": {
|
| 240 |
+
"latest": "2025-02-26T17-13-13.448521"
|
| 241 |
+
}
|
| 242 |
+
},
|
| 243 |
+
"ifeval": {
|
| 244 |
+
"subset": "extended|ifeval|0",
|
| 245 |
+
"metrics": ["prompt_level_strict_acc"],
|
| 246 |
+
"tags": {
|
| 247 |
+
"latest": "2025-02-26T17-13-13.448521"
|
| 248 |
+
}
|
| 249 |
+
}
|
| 250 |
+
}
|
| 251 |
+
},
|
| 252 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
| 253 |
+
"display_name": "DeepSeek Llama 70B",
|
| 254 |
+
"provider": "deepseek",
|
| 255 |
+
"open": true,
|
| 256 |
+
"benchmarks": {
|
| 257 |
+
"math_500": {
|
| 258 |
+
"subset": "lighteval|math_500|0",
|
| 259 |
+
"metrics": ["extractive_match"],
|
| 260 |
+
"tags": {
|
| 261 |
+
"latest": "2025-02-27T11-09-04.037858"
|
| 262 |
+
}
|
| 263 |
+
},
|
| 264 |
+
"gpqa_diamond": {
|
| 265 |
+
"subset": "lighteval|gpqa:diamond|0",
|
| 266 |
+
"metrics": ["extractive_match"],
|
| 267 |
+
"tags": {
|
| 268 |
+
"latest": "2025-02-27T11-09-04.037858"
|
| 269 |
+
}
|
| 270 |
+
},
|
| 271 |
+
"aime_24": {
|
| 272 |
+
"subset": "lighteval|aime24|0",
|
| 273 |
+
"metrics": ["extractive_match"],
|
| 274 |
+
"tags": {
|
| 275 |
+
"latest": "2025-02-27T11-09-04.037858"
|
| 276 |
+
}
|
| 277 |
+
},
|
| 278 |
+
"aime_25": {
|
| 279 |
+
"subset": "lighteval|aime25|0",
|
| 280 |
+
"metrics": ["extractive_match"],
|
| 281 |
+
"tags": {
|
| 282 |
+
"latest": "2025-02-27T11-09-04.037858"
|
| 283 |
+
}
|
| 284 |
+
},
|
| 285 |
+
"ifeval": {
|
| 286 |
+
"subset": "extended|ifeval|0",
|
| 287 |
+
"metrics": ["prompt_level_strict_acc"],
|
| 288 |
+
"tags": {
|
| 289 |
+
"latest": "2025-02-27T14-02-02.414381"
|
| 290 |
+
}
|
| 291 |
+
}
|
| 292 |
+
}
|
| 293 |
+
},
|
| 294 |
+
"qihoo360/TinyR1-32B-Preview": {
|
| 295 |
+
"display_name": "TinyR1 32B",
|
| 296 |
+
"provider": "qihoo360",
|
| 297 |
+
"open": true,
|
| 298 |
+
"benchmarks": {
|
| 299 |
+
"math_500": {
|
| 300 |
+
"subset": "lighteval|math_500|0",
|
| 301 |
+
"metrics": ["extractive_match"],
|
| 302 |
+
"tags": {
|
| 303 |
+
"latest": "2025-02-27T13-32-41.564652"
|
| 304 |
+
}
|
| 305 |
+
},
|
| 306 |
+
"gpqa_diamond": {
|
| 307 |
+
"subset": "lighteval|gpqa:diamond|0",
|
| 308 |
+
"metrics": ["extractive_match"],
|
| 309 |
+
"tags": {
|
| 310 |
+
"latest": "2025-02-27T13-32-41.564652"
|
| 311 |
+
}
|
| 312 |
+
},
|
| 313 |
+
"aime_24": {
|
| 314 |
+
"subset": "lighteval|aime24|0",
|
| 315 |
+
"metrics": ["extractive_match"],
|
| 316 |
+
"tags": {
|
| 317 |
+
"latest": "2025-02-27T13-32-41.564652"
|
| 318 |
+
}
|
| 319 |
+
},
|
| 320 |
+
"aime_25": {
|
| 321 |
+
"subset": "lighteval|aime25|0",
|
| 322 |
+
"metrics": ["extractive_match"],
|
| 323 |
+
"tags": {
|
| 324 |
+
"latest": "2025-02-27T13-32-41.564652"
|
| 325 |
+
}
|
| 326 |
+
},
|
| 327 |
+
"ifeval": {
|
| 328 |
+
"subset": "extended|ifeval|0",
|
| 329 |
+
"metrics": ["prompt_level_strict_acc"],
|
| 330 |
+
"tags": {
|
| 331 |
+
"latest": "2025-02-27T13-32-41.564652"
|
| 332 |
+
}
|
| 333 |
+
}
|
| 334 |
+
}
|
| 335 |
+
},
|
| 336 |
+
"openai/gpt-4.5-preview-2025-02-27": {
|
| 337 |
+
"display_name": "gpt 4.5",
|
| 338 |
+
"provider": "openai",
|
| 339 |
+
"open": false,
|
| 340 |
+
"benchmarks": {
|
| 341 |
+
"math_500": {
|
| 342 |
+
"subset": "lighteval|math_500|0",
|
| 343 |
+
"metrics": ["extractive_match"],
|
| 344 |
+
"tags": {
|
| 345 |
+
"latest": "2025-03-03T11-17-20.767980"
|
| 346 |
+
}
|
| 347 |
+
},
|
| 348 |
+
"gpqa_diamond": {
|
| 349 |
+
"subset": "lighteval|gpqa:diamond|0",
|
| 350 |
+
"metrics": ["extractive_match"],
|
| 351 |
+
"tags": {
|
| 352 |
+
"latest": "2025-03-03T11-35-34.241611"
|
| 353 |
+
}
|
| 354 |
+
},
|
| 355 |
+
"aime_24": {
|
| 356 |
+
"subset": "lighteval|aime24|0",
|
| 357 |
+
"metrics": ["extractive_match"],
|
| 358 |
+
"tags": {
|
| 359 |
+
"latest": "2025-03-03T11-15-32.836958"
|
| 360 |
+
}
|
| 361 |
+
},
|
| 362 |
+
"aime_25": {
|
| 363 |
+
"subset": "lighteval|aime25|0",
|
| 364 |
+
"metrics": ["extractive_match"],
|
| 365 |
+
"tags": {
|
| 366 |
+
"latest": "2025-03-03T11-15-32.836958"
|
| 367 |
+
}
|
| 368 |
+
},
|
| 369 |
+
"ifeval": {
|
| 370 |
+
"subset": "extended|ifeval|0",
|
| 371 |
+
"metrics": ["prompt_level_strict_acc"],
|
| 372 |
+
"tags": {
|
| 373 |
+
"latest": "2025-03-03T11-17-20.767980"
|
| 374 |
+
}
|
| 375 |
+
}
|
| 376 |
+
}
|
| 377 |
+
},
|
| 378 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
| 379 |
+
"display_name": "DeepSeek Qwen 32B",
|
| 380 |
+
"provider": "deepseek",
|
| 381 |
+
"open": true,
|
| 382 |
+
"benchmarks": {
|
| 383 |
+
"math_500": {
|
| 384 |
+
"subset": "lighteval|math_500|0",
|
| 385 |
+
"metrics": ["extractive_match"],
|
| 386 |
+
"tags": {
|
| 387 |
+
"latest": "2025-03-03T14-51-09.849491"
|
| 388 |
+
}
|
| 389 |
+
},
|
| 390 |
+
"gpqa_diamond": {
|
| 391 |
+
"subset": "lighteval|gpqa:diamond|0",
|
| 392 |
+
"metrics": ["extractive_match"],
|
| 393 |
+
"tags": {
|
| 394 |
+
"latest": "2025-03-03T14-51-09.849491"
|
| 395 |
+
}
|
| 396 |
+
},
|
| 397 |
+
"aime_24": {
|
| 398 |
+
"subset": "lighteval|aime24|0",
|
| 399 |
+
"metrics": ["extractive_match"],
|
| 400 |
+
"tags": {
|
| 401 |
+
"latest": "2025-03-03T14-51-09.849491"
|
| 402 |
+
}
|
| 403 |
+
},
|
| 404 |
+
"aime_25": {
|
| 405 |
+
"subset": "lighteval|aime25|0",
|
| 406 |
+
"metrics": ["extractive_match"],
|
| 407 |
+
"tags": {
|
| 408 |
+
"latest": "2025-03-03T14-51-09.849491"
|
| 409 |
+
}
|
| 410 |
+
},
|
| 411 |
+
"ifeval": {
|
| 412 |
+
"subset": "extended|ifeval|0",
|
| 413 |
+
"metrics": ["prompt_level_strict_acc"],
|
| 414 |
+
"tags": {
|
| 415 |
+
"latest": "2025-03-03T15-06-10.838105"
|
| 416 |
+
}
|
| 417 |
+
}
|
| 418 |
+
}
|
| 419 |
+
}
|
| 420 |
+
}
|