Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from unsloth import FastVisionModel
|
| 5 |
+
from peft import PeftModel
|
| 6 |
+
|
| 7 |
+
# -----------------------------------------------------------------------------
|
| 8 |
+
# 1. Load Model Correctly (No Double Patching)
|
| 9 |
+
# -----------------------------------------------------------------------------
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# Load model with 4-bit quantization
|
| 13 |
+
model, tokenizer = FastVisionModel.from_pretrained(
|
| 14 |
+
"unsloth/Llama-3.2-11B-Vision-Instruct",
|
| 15 |
+
load_in_4bit = True,
|
| 16 |
+
device_map = "auto",
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# -----------------------------------------------------------------------------
|
| 20 |
+
# 2. Load Your Fine-Tuned Adapter CORRECTLY
|
| 21 |
+
# -----------------------------------------------------------------------------
|
| 22 |
+
|
| 23 |
+
# Loading adapter WITHOUT get_peft_model()
|
| 24 |
+
model = PeftModel.from_pretrained(model, "/content/fine_tuned_model")
|
| 25 |
+
model = model.merge_and_unload() # Merge adapters into base model
|
| 26 |
+
model.to("cuda")
|
| 27 |
+
model.eval()
|
| 28 |
+
|
| 29 |
+
# -----------------------------------------------------------------------------
|
| 30 |
+
# 3. Data preprocessing step
|
| 31 |
+
# -----------------------------------------------------------------------------
|
| 32 |
+
|
| 33 |
+
def analyze(image, user_prompt):
|
| 34 |
+
if image.mode != "RGB":
|
| 35 |
+
image = image.convert("RGB")
|
| 36 |
+
|
| 37 |
+
messages = [
|
| 38 |
+
{"role": "user", "content": [
|
| 39 |
+
{"type": "image", "image": image},
|
| 40 |
+
{"type": "text", "text": user_prompt}
|
| 41 |
+
]}
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
| 45 |
+
|
| 46 |
+
inputs = tokenizer(
|
| 47 |
+
image,
|
| 48 |
+
input_text,
|
| 49 |
+
return_tensors = "pt",
|
| 50 |
+
add_special_tokens = False,
|
| 51 |
+
).to("cuda")
|
| 52 |
+
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = model.generate(
|
| 55 |
+
**inputs,
|
| 56 |
+
max_new_tokens = 512,
|
| 57 |
+
use_cache = True,
|
| 58 |
+
temperature = 1.0,
|
| 59 |
+
min_p = 0.1,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 63 |
+
|
| 64 |
+
# -----------------------------------------------------------------------------
|
| 65 |
+
# 4. Launch Interface
|
| 66 |
+
# -----------------------------------------------------------------------------
|
| 67 |
+
|
| 68 |
+
gr.Interface(
|
| 69 |
+
fn=analyze,
|
| 70 |
+
inputs=[
|
| 71 |
+
gr.Image(type="pil", label="Upload Medical Scan"),
|
| 72 |
+
gr.Textbox(
|
| 73 |
+
placeholder="Example: 'Describe any abnormalities in this chest X-ray'",
|
| 74 |
+
label="Your Question",
|
| 75 |
+
lines=2
|
| 76 |
+
)
|
| 77 |
+
],
|
| 78 |
+
outputs=gr.Textbox(label="Expert Analysis"),
|
| 79 |
+
title=" DAS medhub Radiology AI Assistant (Fine-Tuned)",
|
| 80 |
+
description="Upload a medical image and ask questions about it"
|
| 81 |
+
).launch(server_port=7860, debug=False)
|