Spaces:
Running
Running
Commit
·
7223d40
1
Parent(s):
561315f
init
Browse files- .DS_Store +0 -0
- .gitignore +4 -1
- app.py +29 -13
- labels.json +4 -0
- nfsw.py +210 -0
- requirements.txt +4 -1
- util.py +0 -38
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
.gitignore
CHANGED
|
@@ -1,2 +1,5 @@
|
|
| 1 |
*.jpg
|
| 2 |
-
*.png
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
*.jpg
|
| 2 |
+
*.png
|
| 3 |
+
hf_cache/
|
| 4 |
+
models/
|
| 5 |
+
__pycache__/
|
app.py
CHANGED
|
@@ -1,10 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import threading
|
| 3 |
-
from util import process_image_edit,
|
|
|
|
| 4 |
|
| 5 |
IP_Dict = {}
|
| 6 |
NSFW_Dict = {} # 记录每个IP的NSFW违规次数
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.Progress()):
|
| 9 |
"""
|
| 10 |
Interface function for processing image editing
|
|
@@ -24,7 +33,7 @@ def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.P
|
|
| 24 |
# 检查IP是否因NSFW违规过多而被屏蔽 3
|
| 25 |
if client_ip in NSFW_Dict and NSFW_Dict[client_ip] >= 3:
|
| 26 |
print(f"❌ IP blocked due to excessive NSFW violations - IP: {client_ip}({country_info}), violations: {NSFW_Dict[client_ip]}")
|
| 27 |
-
return None, "❌
|
| 28 |
|
| 29 |
if input_image is None:
|
| 30 |
return None, "Please upload an image first"
|
|
@@ -36,14 +45,21 @@ def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.P
|
|
| 36 |
if len(prompt.strip()) <= 3:
|
| 37 |
return None, "❌ Editing prompt must be more than 3 characters"
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
if IP_Dict[client_ip]>8 and country_info.lower() in ["印度", "巴基斯坦"]:
|
| 49 |
print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
|
|
@@ -67,17 +83,17 @@ def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.P
|
|
| 67 |
|
| 68 |
try:
|
| 69 |
# 打印成功访问的信息
|
| 70 |
-
print(f"✅ Processing started - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
|
| 71 |
|
| 72 |
# Call image editing processing function
|
| 73 |
result_url, message = process_image_edit(input_image, prompt.strip(), progress_callback)
|
| 74 |
|
| 75 |
if result_url:
|
| 76 |
-
print(f"✅ Processing completed successfully - IP: {client_ip}({country_info}), result_url: {result_url}")
|
| 77 |
progress(1.0, desc="Processing completed")
|
| 78 |
return result_url, "✅ " + message
|
| 79 |
else:
|
| 80 |
-
print(f"❌ Processing failed - IP: {client_ip}({country_info}), error: {message}")
|
| 81 |
return None, "❌ " + message
|
| 82 |
|
| 83 |
except Exception as e:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import threading
|
| 3 |
+
from util import process_image_edit, get_country_info_safe
|
| 4 |
+
from nfsw import NSFWDetector
|
| 5 |
|
| 6 |
IP_Dict = {}
|
| 7 |
NSFW_Dict = {} # 记录每个IP的NSFW违规次数
|
| 8 |
|
| 9 |
+
# 初始化NSFW检测器(从Hugging Face下载)
|
| 10 |
+
try:
|
| 11 |
+
nsfw_detector = NSFWDetector() # 自动从Hugging Face下载falconsai_yolov9_nsfw_model_quantized.pt
|
| 12 |
+
print("✅ NSFW检测器初始化成功")
|
| 13 |
+
except Exception as e:
|
| 14 |
+
print(f"❌ NSFW检测器初始化失败: {e}")
|
| 15 |
+
nsfw_detector = None
|
| 16 |
+
|
| 17 |
def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.Progress()):
|
| 18 |
"""
|
| 19 |
Interface function for processing image editing
|
|
|
|
| 33 |
# 检查IP是否因NSFW违规过多而被屏蔽 3
|
| 34 |
if client_ip in NSFW_Dict and NSFW_Dict[client_ip] >= 3:
|
| 35 |
print(f"❌ IP blocked due to excessive NSFW violations - IP: {client_ip}({country_info}), violations: {NSFW_Dict[client_ip]}")
|
| 36 |
+
return None, f"❌ Your ip {client_ip},your region has been blocked"
|
| 37 |
|
| 38 |
if input_image is None:
|
| 39 |
return None, "Please upload an image first"
|
|
|
|
| 45 |
if len(prompt.strip()) <= 3:
|
| 46 |
return None, "❌ Editing prompt must be more than 3 characters"
|
| 47 |
|
| 48 |
+
# 检查图片是否包含NSFW内容
|
| 49 |
+
nsfw_result = None
|
| 50 |
+
if nsfw_detector is not None:
|
| 51 |
+
try:
|
| 52 |
+
nsfw_result = nsfw_detector.predict_label_only(input_image)
|
| 53 |
+
if nsfw_result.lower() == "nsfw":
|
| 54 |
+
# 记录NSFW违规次数
|
| 55 |
+
if client_ip not in NSFW_Dict:
|
| 56 |
+
NSFW_Dict[client_ip] = 0
|
| 57 |
+
NSFW_Dict[client_ip] += 1
|
| 58 |
+
print(f"❌ NSFW image detected - IP: {client_ip}({country_info}), violations: {NSFW_Dict[client_ip]}")
|
| 59 |
+
return None, f"❌ Your ip {client_ip},your region has been blocked"
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"⚠️ NSFW检测失败: {e}")
|
| 62 |
+
# 检测失败时允许继续处理
|
| 63 |
|
| 64 |
if IP_Dict[client_ip]>8 and country_info.lower() in ["印度", "巴基斯坦"]:
|
| 65 |
print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
|
|
|
|
| 83 |
|
| 84 |
try:
|
| 85 |
# 打印成功访问的信息
|
| 86 |
+
print(f"✅ Processing started - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}", flush=True)
|
| 87 |
|
| 88 |
# Call image editing processing function
|
| 89 |
result_url, message = process_image_edit(input_image, prompt.strip(), progress_callback)
|
| 90 |
|
| 91 |
if result_url:
|
| 92 |
+
print(f"✅ Processing completed successfully - IP: {client_ip}({country_info}), result_url: {result_url}", flush=True)
|
| 93 |
progress(1.0, desc="Processing completed")
|
| 94 |
return result_url, "✅ " + message
|
| 95 |
else:
|
| 96 |
+
print(f"❌ Processing failed - IP: {client_ip}({country_info}), error: {message}", flush=True)
|
| 97 |
return None, "❌ " + message
|
| 98 |
|
| 99 |
except Exception as e:
|
labels.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"0": "normal",
|
| 3 |
+
"1": "nsfw"
|
| 4 |
+
}
|
nfsw.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
import onnxruntime as ort
|
| 5 |
+
import json
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class NSFWDetector:
|
| 10 |
+
"""
|
| 11 |
+
NSFW检测器类,使用YOLOv9模型进行图像分类
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
def __init__(self, repo_id="Falconsai/nsfw_image_detection",
|
| 15 |
+
model_filename="falconsai_yolov9_nsfw_model_quantized.pt",
|
| 16 |
+
labels_filename="labels.json",
|
| 17 |
+
input_size=(224, 224)):
|
| 18 |
+
"""
|
| 19 |
+
初始化NSFW检测器
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
repo_id (str): Hugging Face仓库ID
|
| 23 |
+
model_filename (str): 模型文件名
|
| 24 |
+
labels_filename (str): 标签文件名
|
| 25 |
+
input_size (tuple): 模型输入尺寸 (height, width)
|
| 26 |
+
"""
|
| 27 |
+
self.repo_id = repo_id
|
| 28 |
+
self.model_filename = model_filename
|
| 29 |
+
self.labels_filename = labels_filename
|
| 30 |
+
self.input_size = input_size
|
| 31 |
+
|
| 32 |
+
# 从Hugging Face下载文件
|
| 33 |
+
self.model_path = self._download_model()
|
| 34 |
+
self.labels_path = self._download_labels()
|
| 35 |
+
|
| 36 |
+
# 加载标签
|
| 37 |
+
self.labels = self._load_labels()
|
| 38 |
+
|
| 39 |
+
# 加载模型
|
| 40 |
+
self.session = self._load_model()
|
| 41 |
+
self.input_name = self.session.get_inputs()[0].name
|
| 42 |
+
self.output_name = self.session.get_outputs()[0].name
|
| 43 |
+
|
| 44 |
+
def _download_model(self):
|
| 45 |
+
"""
|
| 46 |
+
从Hugging Face下载模型文件
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
str: 下载的模型文件路径
|
| 50 |
+
"""
|
| 51 |
+
try:
|
| 52 |
+
print(f"正在从 {self.repo_id} 下载模型文件: {self.model_filename}")
|
| 53 |
+
model_path = hf_hub_download(
|
| 54 |
+
repo_id=self.repo_id,
|
| 55 |
+
filename=self.model_filename,
|
| 56 |
+
cache_dir="./hf_cache"
|
| 57 |
+
)
|
| 58 |
+
print(f"✅ 模型下载成功: {model_path}")
|
| 59 |
+
return model_path
|
| 60 |
+
except Exception as e:
|
| 61 |
+
raise RuntimeError(f"模型下载失败: {e}")
|
| 62 |
+
|
| 63 |
+
def _download_labels(self):
|
| 64 |
+
"""
|
| 65 |
+
从Hugging Face下载标签文件
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
str: 下载的标签文件路径
|
| 69 |
+
"""
|
| 70 |
+
try:
|
| 71 |
+
print(f"正在从 {self.repo_id} 下载标签文件: {self.labels_filename}")
|
| 72 |
+
labels_path = hf_hub_download(
|
| 73 |
+
repo_id=self.repo_id,
|
| 74 |
+
filename=self.labels_filename,
|
| 75 |
+
cache_dir="./hf_cache"
|
| 76 |
+
)
|
| 77 |
+
print(f"✅ 标签文件下载成功: {labels_path}")
|
| 78 |
+
return labels_path
|
| 79 |
+
except Exception as e:
|
| 80 |
+
raise RuntimeError(f"标签文件下载失败: {e}")
|
| 81 |
+
|
| 82 |
+
def _load_labels(self):
|
| 83 |
+
"""
|
| 84 |
+
加载类别标签
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
dict: 标签字典
|
| 88 |
+
"""
|
| 89 |
+
try:
|
| 90 |
+
with open(self.labels_path, "r") as f:
|
| 91 |
+
return json.load(f)
|
| 92 |
+
except FileNotFoundError:
|
| 93 |
+
raise FileNotFoundError(f"标签文件未找到: {self.labels_path}")
|
| 94 |
+
except json.JSONDecodeError:
|
| 95 |
+
raise ValueError(f"标签文件格式错误: {self.labels_path}")
|
| 96 |
+
|
| 97 |
+
def _load_model(self):
|
| 98 |
+
"""
|
| 99 |
+
加载ONNX模型
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
onnxruntime.InferenceSession: 模型会话
|
| 103 |
+
"""
|
| 104 |
+
try:
|
| 105 |
+
return ort.InferenceSession(self.model_path)
|
| 106 |
+
except Exception as e:
|
| 107 |
+
raise RuntimeError(f"模型加载失败: {self.model_path}, 错误: {e}")
|
| 108 |
+
|
| 109 |
+
def _preprocess_image(self, image_path):
|
| 110 |
+
"""
|
| 111 |
+
图像预处理
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
image_path (str): 图像文件路径
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
tuple: (预处理后的张量, 原始图像)
|
| 118 |
+
"""
|
| 119 |
+
try:
|
| 120 |
+
# 加载并转换图像
|
| 121 |
+
original_image = Image.open(image_path).convert("RGB")
|
| 122 |
+
|
| 123 |
+
# 调整尺寸
|
| 124 |
+
image_resized = original_image.resize(self.input_size, Image.Resampling.BILINEAR)
|
| 125 |
+
|
| 126 |
+
# 转换为numpy数组并归一化
|
| 127 |
+
image_np = np.array(image_resized, dtype=np.float32) / 255.0
|
| 128 |
+
|
| 129 |
+
# 调整维度顺序 [H, W, C] -> [C, H, W]
|
| 130 |
+
image_np = np.transpose(image_np, (2, 0, 1))
|
| 131 |
+
|
| 132 |
+
# 添加批次维度 [C, H, W] -> [1, C, H, W]
|
| 133 |
+
input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32)
|
| 134 |
+
|
| 135 |
+
return input_tensor, original_image
|
| 136 |
+
|
| 137 |
+
except FileNotFoundError:
|
| 138 |
+
raise FileNotFoundError(f"图像文件未找到: {image_path}")
|
| 139 |
+
except Exception as e:
|
| 140 |
+
raise RuntimeError(f"图像预处理失败: {e}")
|
| 141 |
+
|
| 142 |
+
def _postprocess_predictions(self, predictions):
|
| 143 |
+
"""
|
| 144 |
+
后处理预测结果
|
| 145 |
+
|
| 146 |
+
Args:
|
| 147 |
+
predictions: 模型预测输出
|
| 148 |
+
|
| 149 |
+
Returns:
|
| 150 |
+
str: 预测的类别标签
|
| 151 |
+
"""
|
| 152 |
+
predicted_index = np.argmax(predictions)
|
| 153 |
+
predicted_label = self.labels[str(predicted_index)]
|
| 154 |
+
return predicted_label
|
| 155 |
+
|
| 156 |
+
def predict(self, image_path):
|
| 157 |
+
"""
|
| 158 |
+
对单张图像进行NSFW检测
|
| 159 |
+
|
| 160 |
+
Args:
|
| 161 |
+
image_path (str): 图像文件路径
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
tuple: (预测标签, 原始图像)
|
| 165 |
+
"""
|
| 166 |
+
# 预处理图像
|
| 167 |
+
input_tensor, original_image = self._preprocess_image(image_path)
|
| 168 |
+
|
| 169 |
+
# 运行推理
|
| 170 |
+
outputs = self.session.run([self.output_name], {self.input_name: input_tensor})
|
| 171 |
+
predictions = outputs[0]
|
| 172 |
+
|
| 173 |
+
# 后处理结果
|
| 174 |
+
predicted_label = self._postprocess_predictions(predictions)
|
| 175 |
+
|
| 176 |
+
return predicted_label, original_image
|
| 177 |
+
|
| 178 |
+
def predict_label_only(self, image_path):
|
| 179 |
+
"""
|
| 180 |
+
只返回预测标签(不返回图像)
|
| 181 |
+
|
| 182 |
+
Args:
|
| 183 |
+
image_path (str): 图像文件路径
|
| 184 |
+
|
| 185 |
+
Returns:
|
| 186 |
+
str: 预测的类别标签
|
| 187 |
+
"""
|
| 188 |
+
predicted_label, _ = self.predict(image_path)
|
| 189 |
+
return predicted_label
|
| 190 |
+
|
| 191 |
+
# --- 使用示例 ---
|
| 192 |
+
if __name__ == "__main__":
|
| 193 |
+
# 配置参数
|
| 194 |
+
single_image_path = "datas/bad01.jpg"
|
| 195 |
+
|
| 196 |
+
try:
|
| 197 |
+
# 创建检测器实例(自动从Hugging Face下载)
|
| 198 |
+
detector = NSFWDetector()
|
| 199 |
+
|
| 200 |
+
# 检查图像文件是否存在
|
| 201 |
+
if os.path.exists(single_image_path):
|
| 202 |
+
# 进行预测
|
| 203 |
+
predicted_label = detector.predict_label_only(single_image_path)
|
| 204 |
+
print(f"图像文件: {single_image_path}")
|
| 205 |
+
print(f"预测结果: {predicted_label}")
|
| 206 |
+
else:
|
| 207 |
+
print(f"错误: 指定的图像文件不存在: {single_image_path}")
|
| 208 |
+
|
| 209 |
+
except Exception as e:
|
| 210 |
+
print(f"初始化检测器时发生错误: {e}")
|
requirements.txt
CHANGED
|
@@ -4,4 +4,7 @@ requests>=2.28.0
|
|
| 4 |
func-timeout>=4.3.5
|
| 5 |
numpy>=1.24.0
|
| 6 |
boto3
|
| 7 |
-
botocore
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
func-timeout>=4.3.5
|
| 5 |
numpy>=1.24.0
|
| 6 |
boto3
|
| 7 |
+
botocore
|
| 8 |
+
onnxruntime
|
| 9 |
+
huggingface_hub>=0.16.0
|
| 10 |
+
Pillow>=9.0.0
|
util.py
CHANGED
|
@@ -177,44 +177,6 @@ def get_country_info_safe(ip):
|
|
| 177 |
return "Unknown"
|
| 178 |
|
| 179 |
|
| 180 |
-
def check_nsfw(prompt):
|
| 181 |
-
"""
|
| 182 |
-
检查prompt是否包含NSFW内容,包含返回1,否则返回0
|
| 183 |
-
"""
|
| 184 |
-
try:
|
| 185 |
-
response = requests.post(
|
| 186 |
-
url="https://openrouter.ai/api/v1/chat/completions",
|
| 187 |
-
headers={
|
| 188 |
-
"Authorization": f"Bearer {LLMKEY}",
|
| 189 |
-
"Content-Type": "application/json",
|
| 190 |
-
},
|
| 191 |
-
data=json.dumps({
|
| 192 |
-
"model": "google/gemini-2.5-flash",
|
| 193 |
-
"messages": [
|
| 194 |
-
{
|
| 195 |
-
"role": "system",
|
| 196 |
-
"content": "你是一个nsfw指令判断助手,请判断用户输入的prompt指令是否会导致nsfw内容? 你只需要回答 是 或者 否"
|
| 197 |
-
},
|
| 198 |
-
{
|
| 199 |
-
"role": "user",
|
| 200 |
-
"content": prompt
|
| 201 |
-
}
|
| 202 |
-
],
|
| 203 |
-
})
|
| 204 |
-
)
|
| 205 |
-
res_json = response.json()
|
| 206 |
-
# 兼容不同模型返回格式
|
| 207 |
-
if "choices" in res_json and len(res_json["choices"]) > 0:
|
| 208 |
-
content = res_json["choices"][0].get("message", {}).get("content", "")
|
| 209 |
-
if "是" in content:
|
| 210 |
-
return 1
|
| 211 |
-
else:
|
| 212 |
-
return 0
|
| 213 |
-
else:
|
| 214 |
-
return 0
|
| 215 |
-
except Exception as e:
|
| 216 |
-
# 出错时默认返回0
|
| 217 |
-
return 0
|
| 218 |
|
| 219 |
|
| 220 |
def submit_image_edit_task(user_image_url, prompt):
|
|
|
|
| 177 |
return "Unknown"
|
| 178 |
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
|
| 182 |
def submit_image_edit_task(user_image_url, prompt):
|