import os from PIL import Image import numpy as np import onnxruntime as ort import json from huggingface_hub import hf_hub_download class NSFWDetector: """ NSFW检测器类,使用YOLOv9模型进行图像分类 """ def __init__(self, repo_id="Falconsai/nsfw_image_detection", model_filename="falconsai_yolov9_nsfw_model_quantized.pt", labels_filename="labels.json", input_size=(224, 224)): """ 初始化NSFW检测器 Args: repo_id (str): Hugging Face仓库ID model_filename (str): 模型文件名 labels_filename (str): 标签文件名 input_size (tuple): 模型输入尺寸 (height, width) """ self.repo_id = repo_id self.model_filename = model_filename self.labels_filename = labels_filename self.input_size = input_size # 从Hugging Face下载文件 self.model_path = self._download_model() self.labels_path = self._download_labels() # 加载标签 self.labels = self._load_labels() # 加载模型 self.session = self._load_model() self.input_name = self.session.get_inputs()[0].name self.output_name = self.session.get_outputs()[0].name def _download_model(self): """ 从Hugging Face下载模型文件 Returns: str: 下载的模型文件路径 """ try: print(f"正在从 {self.repo_id} 下载模型文件: {self.model_filename}") model_path = hf_hub_download( repo_id=self.repo_id, filename=self.model_filename, cache_dir="./hf_cache" ) print(f"✅ 模型下载成功: {model_path}") return model_path except Exception as e: raise RuntimeError(f"模型下载失败: {e}") def _download_labels(self): """ 从Hugging Face下载标签文件 Returns: str: 下载的标签文件路径 """ try: print(f"正在从 {self.repo_id} 下载标签文件: {self.labels_filename}") labels_path = hf_hub_download( repo_id=self.repo_id, filename=self.labels_filename, cache_dir="./hf_cache" ) print(f"✅ 标签文件下载成功: {labels_path}") return labels_path except Exception as e: raise RuntimeError(f"标签文件下载失败: {e}") def _load_labels(self): """ 加载类别标签 Returns: dict: 标签字典 """ try: with open(self.labels_path, "r") as f: return json.load(f) except FileNotFoundError: raise FileNotFoundError(f"标签文件未找到: {self.labels_path}") except json.JSONDecodeError: raise ValueError(f"标签文件格式错误: {self.labels_path}") def _load_model(self): """ 加载ONNX模型 Returns: onnxruntime.InferenceSession: 模型会话 """ try: return ort.InferenceSession(self.model_path) except Exception as e: raise RuntimeError(f"模型加载失败: {self.model_path}, 错误: {e}") def _preprocess_image(self, image_path): """ 图像预处理 Args: image_path (str): 图像文件路径 Returns: tuple: (预处理后的张量, 原始图像) """ try: # 加载并转换图像 original_image = Image.open(image_path).convert("RGB") # 调整尺寸 image_resized = original_image.resize(self.input_size, Image.Resampling.BILINEAR) # 转换为numpy数组并归一化 image_np = np.array(image_resized, dtype=np.float32) / 255.0 # 调整维度顺序 [H, W, C] -> [C, H, W] image_np = np.transpose(image_np, (2, 0, 1)) # 添加批次维度 [C, H, W] -> [1, C, H, W] input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32) return input_tensor, original_image except FileNotFoundError: raise FileNotFoundError(f"图像文件未找到: {image_path}") except Exception as e: raise RuntimeError(f"图像预处理失败: {e}") def _postprocess_predictions(self, predictions): """ 后处理预测结果 Args: predictions: 模型预测输出 Returns: str: 预测的类别标签 """ predicted_index = np.argmax(predictions) predicted_label = self.labels[str(predicted_index)] return predicted_label def predict(self, image_path): """ 对单张图像进行NSFW检测 Args: image_path (str): 图像文件路径 Returns: tuple: (预测标签, 原始图像) """ # 预处理图像 input_tensor, original_image = self._preprocess_image(image_path) # 运行推理 outputs = self.session.run([self.output_name], {self.input_name: input_tensor}) predictions = outputs[0] # 后处理结果 predicted_label = self._postprocess_predictions(predictions) return predicted_label, original_image def predict_label_only(self, image_path): """ 只返回预测标签(不返回图像) Args: image_path (str): 图像文件路径 Returns: str: 预测的类别标签 """ predicted_label, _ = self.predict(image_path) return predicted_label def predict_from_pil(self, pil_image): """ 直接从PIL Image对象进行NSFW检测 Args: pil_image (PIL.Image): PIL图像对象 Returns: tuple: (预测标签, 原始图像) """ try: # 确保是RGB格式 if pil_image.mode != "RGB": pil_image = pil_image.convert("RGB") # 调整尺寸 image_resized = pil_image.resize(self.input_size, Image.Resampling.BILINEAR) # 转换为numpy数组并归一化 image_np = np.array(image_resized, dtype=np.float32) / 255.0 # 调整维度顺序 [H, W, C] -> [C, H, W] image_np = np.transpose(image_np, (2, 0, 1)) # 添加批次维度 [C, H, W] -> [1, C, H, W] input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32) # 运行推理 outputs = self.session.run([self.output_name], {self.input_name: input_tensor}) predictions = outputs[0] # 后处理结果 predicted_label = self._postprocess_predictions(predictions) return predicted_label, pil_image except Exception as e: raise RuntimeError(f"PIL图像预测失败: {e}") def predict_pil_label_only(self, pil_image): """ 从PIL Image对象只返回预测标签 Args: pil_image (PIL.Image): PIL图像对象 Returns: str: 预测的类别标签 """ predicted_label, _ = self.predict_from_pil(pil_image) return predicted_label # --- 使用示例 --- if __name__ == "__main__": # 配置参数 single_image_path = "datas/bad01.jpg" try: # 创建检测器实例(自动从Hugging Face下载) detector = NSFWDetector() # 检查图像文件是否存在 if os.path.exists(single_image_path): # 进行预测 predicted_label = detector.predict_label_only(single_image_path) print(f"图像文件: {single_image_path}") print(f"预测结果: {predicted_label}") else: print(f"错误: 指定的图像文件不存在: {single_image_path}") except Exception as e: print(f"初始化检测器时发生错误: {e}")