Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,25 +2,36 @@ import warnings
|
|
| 2 |
# Suppress FutureWarnings
|
| 3 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 4 |
|
| 5 |
-
# --- Monkey Patch for Gradio
|
| 6 |
-
# This patch prevents
|
| 7 |
try:
|
| 8 |
import gradio_client.utils as client_utils
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
original_get_type = client_utils.get_type
|
| 10 |
|
| 11 |
def patched_get_type(schema):
|
| 12 |
-
# If schema is a bool, simply return a generic type string.
|
| 13 |
if isinstance(schema, bool):
|
| 14 |
return "Any"
|
| 15 |
if not isinstance(schema, dict):
|
| 16 |
return "Any"
|
| 17 |
-
# Otherwise, call the original function.
|
| 18 |
return original_get_type(schema)
|
| 19 |
|
| 20 |
client_utils.get_type = patched_get_type
|
|
|
|
| 21 |
except Exception as e:
|
| 22 |
-
|
| 23 |
-
print("Warning: Failed to patch gradio_client.utils.get_type:", e)
|
| 24 |
|
| 25 |
import random
|
| 26 |
import pandas as pd
|
|
@@ -30,6 +41,7 @@ import nltk
|
|
| 30 |
import gradio as gr
|
| 31 |
from nltk.sentiment import SentimentIntensityAnalyzer
|
| 32 |
from textblob import TextBlob
|
|
|
|
| 33 |
from transformers import (
|
| 34 |
AutoTokenizer,
|
| 35 |
AutoModelForCausalLM,
|
|
@@ -106,10 +118,9 @@ class EmotionalAnalyzer:
|
|
| 106 |
plt.close()
|
| 107 |
return path
|
| 108 |
except Exception:
|
| 109 |
-
return None
|
| 110 |
|
| 111 |
# --- Text Completion LLM ---
|
| 112 |
-
# Load the fine-tuned LLaMA model and tokenizer
|
| 113 |
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
| 114 |
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
| 115 |
|
|
@@ -194,5 +205,5 @@ with gr.Blocks(title="ELN LLaMA 1B Enhanced Demo") as app:
|
|
| 194 |
comp_button = gr.Button("Complete Text")
|
| 195 |
comp_button.click(generate_completion, inputs=[comp_text, comp_temp, comp_len], outputs=comp_output)
|
| 196 |
|
| 197 |
-
# Launch the Gradio app (remove share=True if
|
| 198 |
app.launch(share=True)
|
|
|
|
| 2 |
# Suppress FutureWarnings
|
| 3 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 4 |
|
| 5 |
+
# --- Monkey Patch for Gradio Schema Parsing ---
|
| 6 |
+
# This patch prevents APIInfoParseError by handling boolean schema values.
|
| 7 |
try:
|
| 8 |
import gradio_client.utils as client_utils
|
| 9 |
+
|
| 10 |
+
# Patch the helper function to handle bool types in the schema.
|
| 11 |
+
original_json_schema_to_python_type = client_utils._json_schema_to_python_type
|
| 12 |
+
|
| 13 |
+
def patched_json_schema_to_python_type(schema, defs=None):
|
| 14 |
+
if isinstance(schema, bool):
|
| 15 |
+
# If the schema is a boolean, simply return a generic type.
|
| 16 |
+
return "Any"
|
| 17 |
+
return original_json_schema_to_python_type(schema, defs)
|
| 18 |
+
|
| 19 |
+
client_utils._json_schema_to_python_type = patched_json_schema_to_python_type
|
| 20 |
+
|
| 21 |
+
# Also patch get_type to be extra safe.
|
| 22 |
original_get_type = client_utils.get_type
|
| 23 |
|
| 24 |
def patched_get_type(schema):
|
|
|
|
| 25 |
if isinstance(schema, bool):
|
| 26 |
return "Any"
|
| 27 |
if not isinstance(schema, dict):
|
| 28 |
return "Any"
|
|
|
|
| 29 |
return original_get_type(schema)
|
| 30 |
|
| 31 |
client_utils.get_type = patched_get_type
|
| 32 |
+
|
| 33 |
except Exception as e:
|
| 34 |
+
print("Warning: Failed to patch gradio_client schema utils:", e)
|
|
|
|
| 35 |
|
| 36 |
import random
|
| 37 |
import pandas as pd
|
|
|
|
| 41 |
import gradio as gr
|
| 42 |
from nltk.sentiment import SentimentIntensityAnalyzer
|
| 43 |
from textblob import TextBlob
|
| 44 |
+
import torch
|
| 45 |
from transformers import (
|
| 46 |
AutoTokenizer,
|
| 47 |
AutoModelForCausalLM,
|
|
|
|
| 118 |
plt.close()
|
| 119 |
return path
|
| 120 |
except Exception:
|
| 121 |
+
return None # Ensures that if there's an issue, we return None
|
| 122 |
|
| 123 |
# --- Text Completion LLM ---
|
|
|
|
| 124 |
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
| 125 |
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
|
| 126 |
|
|
|
|
| 205 |
comp_button = gr.Button("Complete Text")
|
| 206 |
comp_button.click(generate_completion, inputs=[comp_text, comp_temp, comp_len], outputs=comp_output)
|
| 207 |
|
| 208 |
+
# Launch the Gradio app (remove share=True if running in an environment that doesn't support it)
|
| 209 |
app.launch(share=True)
|