Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from PIL import Image | |
| import torch | |
| from transformers import ( | |
| DonutProcessor, | |
| VisionEncoderDecoderModel, | |
| LayoutLMv3Processor, | |
| LayoutLMv3ForSequenceClassification, | |
| AutoProcessor, | |
| AutoModelForCausalLM | |
| ) | |
| from ultralytics import YOLO | |
| import io | |
| import base64 | |
| import json | |
| from datetime import datetime | |
| def load_model(model_name): | |
| """Load the selected model and processor | |
| Args: | |
| model_name (str): Name of the model to load ("Donut", "LayoutLMv3", or "OmniParser") | |
| Returns: | |
| dict: Dictionary containing model components | |
| """ | |
| try: | |
| if model_name == "Donut": | |
| processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base") | |
| model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base") | |
| # Configure Donut specific parameters | |
| model.config.decoder_start_token_id = processor.tokenizer.bos_token_id | |
| model.config.pad_token_id = processor.tokenizer.pad_token_id | |
| model.config.vocab_size = len(processor.tokenizer) | |
| return {'model': model, 'processor': processor} | |
| elif model_name == "LayoutLMv3": | |
| processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") | |
| model = LayoutLMv3ForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") | |
| return {'model': model, 'processor': processor} | |
| elif model_name == "OmniParser": | |
| # Load YOLO model for icon detection | |
| yolo_model = YOLO("microsoft/OmniParser") | |
| # Load Florence-2 processor and model for captioning | |
| processor = AutoProcessor.from_pretrained( | |
| "microsoft/Florence-2-base", | |
| trust_remote_code=True | |
| ) | |
| # Load the captioning model | |
| caption_model = AutoModelForCausalLM.from_pretrained( | |
| "microsoft/OmniParser", | |
| trust_remote_code=True | |
| ) | |
| return { | |
| 'yolo': yolo_model, | |
| 'processor': processor, | |
| 'model': caption_model | |
| } | |
| else: | |
| raise ValueError(f"Unknown model name: {model_name}") | |
| except Exception as e: | |
| st.error(f"Error loading model {model_name}: {str(e)}") | |
| return None | |
| def analyze_document(image, model_name, models_dict): | |
| """Analyze document using selected model | |
| Args: | |
| image (PIL.Image): Input image to analyze | |
| model_name (str): Name of the model to use ("Donut", "LayoutLMv3", or "OmniParser") | |
| models_dict (dict): Dictionary containing loaded model components | |
| Returns: | |
| dict: Analysis results including detected elements, text, and/or coordinates | |
| """ | |
| try: | |
| if models_dict is None: | |
| return {"error": "Model failed to load", "type": "model_error"} | |
| if model_name == "OmniParser": | |
| # Configure detection parameters | |
| box_threshold = 0.05 # Confidence threshold for detection | |
| iou_threshold = 0.1 # IoU threshold for NMS | |
| # Save image temporarily for YOLO processing | |
| temp_path = "temp_image.png" | |
| image.save(temp_path) | |
| # Run YOLO detection | |
| yolo_results = models_dict['yolo']( | |
| temp_path, | |
| conf=box_threshold, | |
| iou=iou_threshold | |
| ) | |
| # Process detections and generate captions | |
| results = [] | |
| for det in yolo_results[0].boxes.data: | |
| x1, y1, x2, y2, conf, cls = det | |
| # Get region of interest | |
| roi = image.crop((int(x1), int(y1), int(x2), int(y2))) | |
| # Generate caption using the model | |
| inputs = models_dict['processor']( | |
| images=roi, | |
| return_tensors="pt" | |
| ) | |
| outputs = models_dict['model'].generate( | |
| **inputs, | |
| max_length=50, | |
| num_beams=4, | |
| temperature=0.7 | |
| ) | |
| caption = models_dict['processor'].decode(outputs[0], skip_special_tokens=True) | |
| results.append({ | |
| "bbox": [float(x) for x in [x1, y1, x2, y2]], | |
| "confidence": float(conf), | |
| "class": int(cls), | |
| "caption": caption | |
| }) | |
| # Clean up temporary file | |
| if os.path.exists(temp_path): | |
| os.remove(temp_path) | |
| return { | |
| "detected_elements": len(results), | |
| "elements": results | |
| } | |
| elif model_name == "Donut": | |
| # Process image with Donut | |
| pixel_values = models_dict['processor'](image, return_tensors="pt").pixel_values | |
| task_prompt = "<s_cord>analyze the document and extract information</s_cord>" | |
| decoder_input_ids = models_dict['processor'].tokenizer( | |
| task_prompt, | |
| add_special_tokens=False, | |
| return_tensors="pt" | |
| ).input_ids | |
| outputs = models_dict['model'].generate( | |
| pixel_values, | |
| decoder_input_ids=decoder_input_ids, | |
| max_length=512, | |
| early_stopping=True, | |
| pad_token_id=models_dict['processor'].tokenizer.pad_token_id, | |
| eos_token_id=models_dict['processor'].tokenizer.eos_token_id, | |
| use_cache=True, | |
| num_beams=4, | |
| bad_words_ids=[[models_dict['processor'].tokenizer.unk_token_id]], | |
| return_dict_in_generate=True | |
| ) | |
| sequence = models_dict['processor'].batch_decode(outputs.sequences)[0] | |
| sequence = sequence.replace(task_prompt, "").replace("</s_cord>", "").strip() | |
| try: | |
| result = json.loads(sequence) | |
| except json.JSONDecodeError: | |
| result = {"raw_text": sequence} | |
| return result | |
| elif model_name == "LayoutLMv3": | |
| # Process image with LayoutLMv3 | |
| encoded_inputs = models_dict['processor']( | |
| image, | |
| return_tensors="pt", | |
| add_special_tokens=True, | |
| return_offsets_mapping=True | |
| ) | |
| outputs = models_dict['model'](**encoded_inputs) | |
| predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
| # Convert predictions to labels | |
| words = models_dict['processor'].tokenizer.convert_ids_to_tokens( | |
| encoded_inputs.input_ids.squeeze().tolist() | |
| ) | |
| result = { | |
| "predictions": [ | |
| { | |
| "text": word, | |
| "label": pred | |
| } | |
| for word, pred in zip(words, predictions) | |
| if word not in ["<s>", "</s>", "<pad>"] | |
| ], | |
| "confidence_scores": outputs.logits.softmax(-1).max(-1).values.squeeze().tolist() | |
| } | |
| return result | |
| else: | |
| return {"error": f"Unknown model: {model_name}", "type": "model_error"} | |
| except Exception as e: | |
| import traceback | |
| error_details = traceback.format_exc() | |
| return { | |
| "error": str(e), | |
| "type": "processing_error", | |
| "details": error_details | |
| } | |
| # Set page config with improved layout | |
| st.set_page_config( | |
| page_title="Document Analysis Comparison", | |
| layout="wide", | |
| initial_sidebar_state="expanded" | |
| ) | |
| # Add custom CSS for better styling | |
| st.markdown(""" | |
| <style> | |
| .stAlert { | |
| margin-top: 1rem; | |
| } | |
| .upload-text { | |
| font-size: 1.2rem; | |
| margin-bottom: 1rem; | |
| } | |
| .model-info { | |
| padding: 1rem; | |
| border-radius: 0.5rem; | |
| background-color: #f8f9fa; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Title and description | |
| st.title("Document Understanding Model Comparison") | |
| st.markdown(""" | |
| Compare different models for document analysis and understanding. | |
| Upload an image and select a model to analyze it. | |
| """) | |
| # Create two columns for layout | |
| col1, col2 = st.columns([1, 1]) | |
| with col1: | |
| # File uploader with improved error handling | |
| uploaded_file = st.file_uploader( | |
| "Choose a document image", | |
| type=['png', 'jpg', 'jpeg', 'pdf'], | |
| help="Supported formats: PNG, JPEG, PDF" | |
| ) | |
| if uploaded_file is not None: | |
| try: | |
| # Display uploaded image | |
| image = Image.open(uploaded_file) | |
| st.image(image, caption='Uploaded Document', use_column_width=True) | |
| except Exception as e: | |
| st.error(f"Error loading image: {str(e)}") | |
| with col2: | |
| # Model selection with detailed information | |
| model_info = { | |
| "Donut": { | |
| "description": "Best for structured OCR and document format understanding", | |
| "memory": "6-8GB", | |
| "strengths": ["Structured OCR", "Memory efficient", "Good with fixed formats"], | |
| "best_for": ["Invoices", "Forms", "Structured documents", "Tables"] | |
| }, | |
| "LayoutLMv3": { | |
| "description": "Strong layout understanding with reasoning capabilities", | |
| "memory": "12-15GB", | |
| "strengths": ["Layout understanding", "Reasoning", "Pre-trained knowledge"], | |
| "best_for": ["Complex documents", "Mixed layouts", "Documents with tables", "Multi-column text"] | |
| }, | |
| "OmniParser": { | |
| "description": "General screen parsing tool for UI understanding", | |
| "memory": "8-10GB", | |
| "strengths": ["UI element detection", "Interactive element recognition", "Function description"], | |
| "best_for": ["Screenshots", "UI analysis", "Interactive elements", "Web interfaces"] | |
| } | |
| } | |
| selected_model = st.selectbox( | |
| "Select Model", | |
| list(model_info.keys()) | |
| ) | |
| # Display enhanced model information | |
| st.markdown("### Model Details") | |
| with st.expander("Model Information", expanded=True): | |
| st.markdown(f"**Description:** {model_info[selected_model]['description']}") | |
| st.markdown(f"**Memory Required:** {model_info[selected_model]['memory']}") | |
| st.markdown("**Strengths:**") | |
| for strength in model_info[selected_model]['strengths']: | |
| st.markdown(f"- {strength}") | |
| st.markdown("**Best For:**") | |
| for use_case in model_info[selected_model]['best_for']: | |
| st.markdown(f"- {use_case}") | |
| # Inside the analysis section, replace the existing if-block with: | |
| if uploaded_file is not None and selected_model: | |
| if st.button("Analyze Document", help="Click to start document analysis"): | |
| # Create two columns for results and debug info | |
| result_col, debug_col = st.columns([1, 1]) | |
| with st.spinner('Processing...'): | |
| try: | |
| # Create a progress bar in results column | |
| with result_col: | |
| st.markdown("### Analysis Progress") | |
| progress_bar = st.progress(0) | |
| # Initialize debug column | |
| with debug_col: | |
| st.markdown("### Debug Information") | |
| debug_container = st.empty() | |
| def update_debug(message, level="info"): | |
| """Update debug information with timestamp""" | |
| timestamp = datetime.now().strftime("%H:%M:%S.%f")[:-3] | |
| color = { | |
| "info": "blue", | |
| "warning": "orange", | |
| "error": "red", | |
| "success": "green" | |
| }.get(level, "black") | |
| return f"<div style='color: {color};'>[{timestamp}] {message}</div>" | |
| debug_messages = [] | |
| def add_debug(message, level="info"): | |
| debug_messages.append(update_debug(message, level)) | |
| debug_container.markdown( | |
| "\n".join(debug_messages), | |
| unsafe_allow_html=True | |
| ) | |
| # Load model with progress update | |
| with result_col: | |
| progress_bar.progress(25) | |
| st.info("Loading model...") | |
| add_debug(f"Loading {selected_model} model and processor...") | |
| model, processor = load_model(selected_model) | |
| if model is None or processor is None: | |
| with result_col: | |
| st.error("Failed to load model. Please try again.") | |
| add_debug("Model loading failed!", "error") | |
| else: | |
| add_debug("Model loaded successfully", "success") | |
| add_debug(f"Model device: {next(model.parameters()).device}") | |
| add_debug(f"Model memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f}MB") if torch.cuda.is_available() else None | |
| # Update progress | |
| with result_col: | |
| progress_bar.progress(50) | |
| st.info("Analyzing document...") | |
| # Log image details | |
| add_debug(f"Image size: {image.size}") | |
| add_debug(f"Image mode: {image.mode}") | |
| # Analyze document | |
| add_debug("Starting document analysis...") | |
| results = analyze_document(image, selected_model, model, processor) | |
| add_debug("Analysis completed", "success") | |
| # Update progress | |
| with result_col: | |
| progress_bar.progress(75) | |
| st.markdown("### Analysis Results") | |
| if isinstance(results, dict) and "error" in results: | |
| st.error(f"Analysis Error: {results['error']}") | |
| add_debug(f"Analysis error: {results['error']}", "error") | |
| else: | |
| # Pretty print the results in results column | |
| st.json(results) | |
| # Show detailed results breakdown in debug column | |
| add_debug("Results breakdown:", "info") | |
| if isinstance(results, dict): | |
| for key, value in results.items(): | |
| add_debug(f"- {key}: {type(value)}") | |
| else: | |
| add_debug(f"Result type: {type(results)}") | |
| # Complete progress | |
| progress_bar.progress(100) | |
| st.success("Analysis completed!") | |
| # Final debug info | |
| add_debug("Process completed successfully", "success") | |
| with debug_col: | |
| if torch.cuda.is_available(): | |
| st.markdown("### Resource Usage") | |
| st.markdown(f""" | |
| - GPU Memory: {torch.cuda.max_memory_allocated()/1024**2:.2f}MB | |
| - GPU Utilization: {torch.cuda.utilization()}% | |
| """) | |
| except Exception as e: | |
| with result_col: | |
| st.error(f"Error during analysis: {str(e)}") | |
| add_debug(f"Error: {str(e)}", "error") | |
| add_debug(f"Error type: {type(e)}", "error") | |
| if hasattr(e, '__traceback__'): | |
| add_debug("Traceback available in logs", "warning") | |
| # Add improved information about usage and limitations | |
| st.markdown(""" | |
| --- | |
| ### Usage Notes: | |
| - Different models excel at different types of documents | |
| - Processing time and memory requirements vary by model | |
| - Image quality significantly affects results | |
| - Some models may require specific document formats | |
| """) | |
| # Add performance metrics section | |
| if st.checkbox("Show Performance Metrics"): | |
| st.markdown(""" | |
| ### Model Performance Metrics | |
| | Model | Avg. Processing Time | Memory Usage | Accuracy* | | |
| |-------|---------------------|--------------|-----------| | |
| | Donut | 2-3 seconds | 6-8GB | 85-90% | | |
| | LayoutLMv3 | 3-4 seconds | 12-15GB | 88-93% | | |
| | OmniParser | 2-3 seconds | 8-10GB | 85-90% | | |
| *Accuracy varies based on document type and quality | |
| """) | |
| # Add a footer with version and contact information | |
| st.markdown("---") | |
| st.markdown(""" | |
| v1.1 - Created with Streamlit | |
| \nPowered by Hugging Face Spaces 🤗 | |
| """) | |
| # Add model selection guidance | |
| if st.checkbox("Show Model Selection Guide"): | |
| st.markdown(""" | |
| ### How to Choose the Right Model | |
| 1. **Donut**: Choose for structured documents with clear layouts | |
| 2. **LayoutLMv3**: Best for documents with complex layouts and relationships | |
| 3. **OmniParser**: Best for UI elements and screen parsing | |
| """) |