Spaces:
Runtime error
Runtime error
getting confused on path
Browse files
app.py
CHANGED
|
@@ -8,7 +8,8 @@ from transformers import (
|
|
| 8 |
LayoutLMv3Processor,
|
| 9 |
LayoutLMv3ForSequenceClassification,
|
| 10 |
AutoProcessor,
|
| 11 |
-
AutoModelForCausalLM
|
|
|
|
| 12 |
)
|
| 13 |
from ultralytics import YOLO
|
| 14 |
import io
|
|
@@ -27,76 +28,35 @@ logger = logging.getLogger(__name__)
|
|
| 27 |
|
| 28 |
@st.cache_resource
|
| 29 |
def load_model(model_name):
|
| 30 |
-
"""Load the selected model and processor
|
| 31 |
-
|
| 32 |
-
Args:
|
| 33 |
-
model_name (str): Name of the model to load ("Donut", "LayoutLMv3", or "OmniParser")
|
| 34 |
-
|
| 35 |
-
Returns:
|
| 36 |
-
dict: Dictionary containing model components
|
| 37 |
-
"""
|
| 38 |
try:
|
| 39 |
if model_name == "OmniParser":
|
| 40 |
try:
|
| 41 |
-
#
|
| 42 |
-
yolo_model = YOLO("microsoft/OmniParser/icon_detect") # Updated path
|
| 43 |
-
|
| 44 |
processor = AutoProcessor.from_pretrained(
|
| 45 |
-
"microsoft/OmniParser
|
| 46 |
trust_remote_code=True
|
| 47 |
)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
"microsoft/OmniParser
|
| 51 |
trust_remote_code=True,
|
| 52 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 53 |
)
|
| 54 |
|
| 55 |
if torch.cuda.is_available():
|
| 56 |
-
|
| 57 |
|
| 58 |
-
st.success("Successfully loaded OmniParser
|
| 59 |
return {
|
| 60 |
-
'yolo': yolo_model,
|
| 61 |
'processor': processor,
|
| 62 |
-
'model':
|
| 63 |
}
|
| 64 |
|
| 65 |
except Exception as e:
|
| 66 |
st.error(f"Failed to load OmniParser from HuggingFace Hub: {str(e)}")
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
weights_path = "weights"
|
| 70 |
-
if os.path.exists(os.path.join(weights_path, "icon_detect/model.safetensors")):
|
| 71 |
-
st.info("Attempting to load from local weights...")
|
| 72 |
-
|
| 73 |
-
yolo_model = YOLO(os.path.join(weights_path, "icon_detect/model.safetensors"))
|
| 74 |
-
|
| 75 |
-
processor = AutoProcessor.from_pretrained(
|
| 76 |
-
os.path.join(weights_path, "icon_caption_florence"),
|
| 77 |
-
trust_remote_code=True,
|
| 78 |
-
local_files_only=True
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
caption_model = AutoModelForCausalLM.from_pretrained(
|
| 82 |
-
os.path.join(weights_path, "icon_caption_florence"),
|
| 83 |
-
trust_remote_code=True,
|
| 84 |
-
local_files_only=True,
|
| 85 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
if torch.cuda.is_available():
|
| 89 |
-
caption_model = caption_model.to("cuda")
|
| 90 |
-
|
| 91 |
-
st.success("Successfully loaded OmniParser from local weights")
|
| 92 |
-
return {
|
| 93 |
-
'yolo': yolo_model,
|
| 94 |
-
'processor': processor,
|
| 95 |
-
'model': caption_model
|
| 96 |
-
}
|
| 97 |
-
else:
|
| 98 |
-
st.error("Could not find local weights and HuggingFace Hub loading failed")
|
| 99 |
-
raise ValueError("No valid model weights found for OmniParser")
|
| 100 |
|
| 101 |
elif model_name == "Donut":
|
| 102 |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
|
|
@@ -132,61 +92,32 @@ def analyze_document(image, model_name, models_dict):
|
|
| 132 |
return {"error": "Model failed to load", "type": "model_error"}
|
| 133 |
|
| 134 |
if model_name == "OmniParser":
|
| 135 |
-
#
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
)
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
# Get region of interest
|
| 157 |
-
roi = image.crop((int(x1), int(y1), int(x2), int(y2)))
|
| 158 |
-
|
| 159 |
-
# Generate caption using the model
|
| 160 |
-
inputs = models_dict['processor'](
|
| 161 |
-
images=roi,
|
| 162 |
-
return_tensors="pt"
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
outputs = models_dict['model'].generate(
|
| 166 |
-
**inputs,
|
| 167 |
-
max_length=50,
|
| 168 |
-
num_beams=4,
|
| 169 |
-
temperature=0.7
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
caption = models_dict['processor'].decode(outputs[0], skip_special_tokens=True)
|
| 173 |
-
|
| 174 |
-
results.append({
|
| 175 |
-
"bbox": [float(x) for x in [x1, y1, x2, y2]],
|
| 176 |
-
"confidence": float(conf),
|
| 177 |
-
"class": int(cls),
|
| 178 |
-
"caption": caption
|
| 179 |
-
})
|
| 180 |
-
|
| 181 |
-
return {
|
| 182 |
-
"detected_elements": len(results),
|
| 183 |
-
"elements": results
|
| 184 |
}
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
if os.path.exists(temp_path):
|
| 189 |
-
os.remove(temp_path)
|
| 190 |
|
| 191 |
elif model_name == "Donut":
|
| 192 |
model = models_dict['model']
|
|
|
|
| 8 |
LayoutLMv3Processor,
|
| 9 |
LayoutLMv3ForSequenceClassification,
|
| 10 |
AutoProcessor,
|
| 11 |
+
AutoModelForCausalLM,
|
| 12 |
+
AutoModelForVisualQuestionAnswering
|
| 13 |
)
|
| 14 |
from ultralytics import YOLO
|
| 15 |
import io
|
|
|
|
| 28 |
|
| 29 |
@st.cache_resource
|
| 30 |
def load_model(model_name):
|
| 31 |
+
"""Load the selected model and processor"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
try:
|
| 33 |
if model_name == "OmniParser":
|
| 34 |
try:
|
| 35 |
+
# Load model directly using official implementation
|
|
|
|
|
|
|
| 36 |
processor = AutoProcessor.from_pretrained(
|
| 37 |
+
"microsoft/OmniParser",
|
| 38 |
trust_remote_code=True
|
| 39 |
)
|
| 40 |
|
| 41 |
+
model = AutoModelForVisualQuestionAnswering.from_pretrained(
|
| 42 |
+
"microsoft/OmniParser",
|
| 43 |
trust_remote_code=True,
|
| 44 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 45 |
)
|
| 46 |
|
| 47 |
if torch.cuda.is_available():
|
| 48 |
+
model = model.to("cuda")
|
| 49 |
|
| 50 |
+
st.success("Successfully loaded OmniParser model")
|
| 51 |
return {
|
|
|
|
| 52 |
'processor': processor,
|
| 53 |
+
'model': model
|
| 54 |
}
|
| 55 |
|
| 56 |
except Exception as e:
|
| 57 |
st.error(f"Failed to load OmniParser from HuggingFace Hub: {str(e)}")
|
| 58 |
+
logger.error(f"OmniParser loading error: {str(e)}", exc_info=True)
|
| 59 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
elif model_name == "Donut":
|
| 62 |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
|
|
|
|
| 92 |
return {"error": "Model failed to load", "type": "model_error"}
|
| 93 |
|
| 94 |
if model_name == "OmniParser":
|
| 95 |
+
# Process image with OmniParser
|
| 96 |
+
inputs = models_dict['processor'](
|
| 97 |
+
images=image,
|
| 98 |
+
return_tensors="pt",
|
| 99 |
+
)
|
| 100 |
|
| 101 |
+
if torch.cuda.is_available():
|
| 102 |
+
inputs = {k: v.to("cuda") if hasattr(v, "to") else v
|
| 103 |
+
for k, v in inputs.items()}
|
| 104 |
|
| 105 |
+
# Generate outputs
|
| 106 |
+
outputs = models_dict['model'](**inputs)
|
| 107 |
+
|
| 108 |
+
# Process results
|
| 109 |
+
# The exact processing will depend on the model's output format
|
| 110 |
+
results = {
|
| 111 |
+
"predictions": outputs.logits.softmax(-1).tolist(),
|
| 112 |
+
"detected_elements": len(outputs.logits[0]),
|
| 113 |
+
"model_output": {
|
| 114 |
+
k: v.tolist() if hasattr(v, "tolist") else str(v)
|
| 115 |
+
for k, v in outputs.items()
|
| 116 |
+
if k != "last_hidden_state" # Skip large tensors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
}
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
return results
|
|
|
|
|
|
|
| 121 |
|
| 122 |
elif model_name == "Donut":
|
| 123 |
model = models_dict['model']
|