Spaces:
Runtime error
Runtime error
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| import pickle | |
| import torch | |
| from transformers import PegasusTokenizer, PegasusForConditionalGeneration | |
| import tensorflow as tf | |
| from tensorflow.python.lib.io import file_io | |
| from nltk.tokenize import sent_tokenize | |
| import io | |
| tf.compat.v1.disable_eager_execution() | |
| # Let's load the model and the tokenizer | |
| model_name = "human-centered-summarization/financial-summarization-pegasus" | |
| tokenizer = PegasusTokenizer.from_pretrained(model_name) | |
| model2 = PegasusForConditionalGeneration.from_pretrained(model_name) | |
| #tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
| #model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) | |
| import nltk | |
| from finbert_embedding.embedding import FinbertEmbedding | |
| import pandas as pd | |
| from nltk.cluster import KMeansClusterer | |
| import numpy as np | |
| import os | |
| from scipy.spatial import distance_matrix | |
| from tensorflow.python.lib.io import file_io | |
| import pickle | |
| nltk.download('punkt') | |
| def pegasus(text): | |
| '''A function to obtain summaries for each tokenized sentence. | |
| It returns a summarized document as output''' | |
| import nltk | |
| nltk.download('punkt') | |
| import os | |
| data_path = "/tmp/" | |
| if not os.path.exists(data_path): | |
| os.makedirs(data_path) | |
| input_ = "/tmp/input.txt" | |
| with open(input_, "w") as file: | |
| file.write(text) | |
| # read the written txt into a variable | |
| with open(input_ , 'r') as f: | |
| text_ = f.read() | |
| def tokenized_sentences(file): | |
| '''A function to generate chunks of sentences and texts. | |
| Returns tokenized texts''' | |
| # Create empty arrays | |
| tokenized_sentences = [] | |
| sentences = [] | |
| length = 0 | |
| for sentence in sent_tokenize(file): | |
| length += len(sentence) | |
| # 512 is the maximum input length for the Pegasus model | |
| if length < 512: | |
| sentences.append(sentence) | |
| else: | |
| tokenized_sentences.append(sentences) | |
| sentences = [sentence] | |
| length = len(sentence) | |
| sentences = [sentence.strip() for sentence in sentences] | |
| size = len(sentences) | |
| # Append all tokenized sentences | |
| if sentences: | |
| tokenized_sentences.append(sentences) | |
| return tokenized_sentences | |
| tokenized = tokenized_sentences(text_) | |
| # Use GPU if available | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| global summary | |
| # Create an empty array for all summaries | |
| summary = [] | |
| if size <= 4: | |
| max_length= size | |
| else: | |
| max_length = size//4 | |
| # Loop to encode tokens, to generate abstractive summary and finally decode tokens | |
| for token in tokenized: | |
| # Encoding | |
| inputs = tokenizer.encode(' '.join(token), truncation=True, return_tensors='pt') | |
| # Use CPU or GPU | |
| inputs = inputs.to(device) | |
| # Get summaries from transformer model | |
| all_summary = model2.to(device).generate(inputs,do_sample=True, | |
| max_length=max_length, top_k=50, top_p=0.95, | |
| num_beams = 5, early_stopping=True) | |
| # num_return_sequences=5) | |
| # length_penalty=0.2, no_repeat_ngram_size=2 | |
| # min_length=10, | |
| # max_length=50) | |
| # Decoding | |
| output = [tokenizer.decode(each_summary, skip_special_tokens=True, clean_up_tokenization_spaces=False) for each_summary in all_summary] | |
| # Append each output to array | |
| summary.append(output) | |
| # Get final summary | |
| summary = [sentence for each in summary for sentence in each] | |
| final = "".join(summary) | |
| return final | |
| import gradio as gr | |
| interface1 = gr.Interface(fn=pegasus, | |
| inputs =gr.inputs.Textbox(lines=15,placeholder="Enter your text !!",label='Input-10k Sections'), | |
| outputs=gr.outputs.Textbox(label='Output- Pegasus')).launch() | |