import os import contextlib from collections import defaultdict from typing import Dict, List import numpy as np import pandas as pd import requests import torch import gradio as gr from ahocorapy.keywordtree import KeywordTree from sentence_transformers import SentenceTransformer from FlagEmbedding import FlagModel from transformers import AutoTokenizer, AutoModel import torch.nn.functional as F CSV_PATH = os.environ.get("CORPUS_CSV", "H_and_M_FINAL.csv") # pre‑indexed corpus TEXT_COL = os.environ.get("TEXT_COLUMN", "text") # column with passage text IMAGE_COL = os.environ.get("IMAGE_URL_COLUMN", "image_url") # optional image column TOP_K = int(os.environ.get("TOP_K", 5)) MAX_TOKENS = int(os.environ.get("MAX_TOKENS", 512)) # truncate long docs BATCH_SIZE = int(os.environ.get("BATCH_SIZE", 8)) MODEL_REPO_MAP = { "intfloat/e5-small-v2": "intfloat/e5-small-v2", "BAAI/bge-small-en-v1.5": "BAAI/bge-small-en-v1.5", } @contextlib.contextmanager def inference_mode(): with torch.inference_mode(): yield def truncate(text: str, max_tokens: int = MAX_TOKENS) -> str: """Very rough truncation by characters (≈ tokens/4).""" approx_chars = max_tokens * 4 # over‑estimate return text[:approx_chars] # class EmbeddingBackend: # """Wraps different HF / FlagEmbedding models behind a common API.""" # def __init__(self, repo: str): # self.repo = repo # if repo == "BAAI/bge-small-en-v1.5": # # FlagEmbedding back‑end (BGE) # self.model = FlagModel( # repo, # query_instruction_for_retrieval="Generate a representation for this sentence to retrieve related articles:", # use_fp16=True, # ) # self.encode_docs = self.model.encode # self.encode_query = lambda q: self.model.encode_queries([q])[0] # else: # # SentenceTransformer back‑ends # self.model = SentenceTransformer(repo, trust_remote_code=True) # if "Qwen3" in repo: # self.encode_query = lambda q: self.model.encode(q, prompt_name="query") # elif "stella" in repo: # self.encode_query = lambda q: self.model.encode(q, prompt_name="s2p_query") # else: # self.encode_query = lambda q: self.model.encode(q) # self.encode_docs = lambda docs: self.model.encode(docs) # # Convenience wrappers that return *numpy* arrays # def encode_corpus(self, passages: List[str]) -> np.ndarray: # emb = self.encode_docs(passages) # return np.asarray(emb) # def encode_question(self, question: str) -> np.ndarray: # emb = self.encode_query(question) # return np.asarray(emb) class EmbeddingBackend: """Adapter that presents .encode_query / .encode_docs for all models.""" def __init__(self, repo: str): self.repo = repo # ---------- BGE (FlagEmbedding) ---------- if repo == "BAAI/bge-small-en-v1.5": self.model = FlagModel( repo, query_instruction_for_retrieval="Generate a representation for this sentence to retrieve related articles::", use_fp16=True, ) self.encode_docs = lambda docs: self.model.encode(docs, batch_size=BATCH_SIZE) self.encode_query = lambda q: self.model.encode_queries([q])[0] return # ---------- E5 ---------- if repo == "intfloat/e5-base-v2": self.tokenizer = AutoTokenizer.from_pretrained(repo) self.model = AutoModel.from_pretrained(repo) def _embed(texts: List[str]): batch_dict = self.tokenizer(texts, max_length=512, padding=True, truncation=True, return_tensors="pt") with inference_mode(): outputs = self.model(**batch_dict) hidden = outputs.last_hidden_state.masked_fill(~batch_dict["attention_mask"].bool().unsqueeze(-1), 0.0) emb = hidden.sum(1) / batch_dict["attention_mask"].sum(1, keepdims=True) return F.normalize(emb, p=2, dim=1).cpu().numpy() self.encode_docs = lambda docs: _embed([f"passage: {d}" for d in docs]) self.encode_query = lambda q: _embed([f"query: {q}"])[0] return # ---------- Qwen 0.6B (SentenceTransformer) ---------- model_kwargs = {} if "Qwen3" in repo and not os.getenv("QWEN_USE_FLASH"): model_kwargs["attn_implementation"] = "eager" self.model = SentenceTransformer(repo, trust_remote_code=True, model_kwargs=model_kwargs) self.encode_query = lambda q: self.model.encode(q, prompt_name="query") self.encode_docs = lambda docs: self.model.encode(docs, batch_size=BATCH_SIZE, normalize_embeddings=False) # ---------- Public wrappers ---------- def encode_corpus(self, passages: List[str]) -> np.ndarray: return self.encode_docs(passages) def encode_question(self, question: str) -> np.ndarray: return self.encode_query(question) # -------------------------------------------------- # Hybrid (exact → semantic) index # -------------------------------------------------- class HybridIndex: def __init__(self, df: pd.DataFrame, text_col: str, backend: EmbeddingBackend): self.df = df self.text_col = text_col self.backend = backend self.text_to_rows = defaultdict(list) # passage → [row ids] self.ac_tree = self._build_ac() self.embeddings = self._build_emb() # ---------- exact match ---------- def _build_ac(self): tree = KeywordTree(case_insensitive=True) for i, passage in self.df[self.text_col].astype(str).items(): tree.add(passage) self.text_to_rows[passage].append(i) tree.finalize() return tree def exact_hits(self, query: str) -> List[int]: rows = set() for keyword, _ in self.ac_tree.search_all(query): rows.update(self.text_to_rows[keyword]) return list(rows) # ---------- semantic ---------- def _build_emb(self): docs = self.df[self.text_col].astype(str).tolist() emb = self.backend.encode_corpus(docs) emb_norm = emb / np.linalg.norm(emb, axis=1, keepdims=True) return emb_norm.astype(np.float32) def semantic_hits(self, query: str, k: int = TOP_K) -> List[int]: q = self.backend.encode_question(query) q = q / np.linalg.norm(q) scores = self.embeddings @ q # cosine similarities return np.argsort(-scores)[:k].tolist() # -------------------------------------------------- # Build indices at start‑up # -------------------------------------------------- def load_corpus(path: str) -> pd.DataFrame: if not os.path.exists(path): raise FileNotFoundError(f"Corpus CSV not found: {path}") df = pd.read_csv(path) if TEXT_COL not in df.columns: raise ValueError(f"'{TEXT_COL}' column missing in {path}") return df def build_indices(df: pd.DataFrame) -> Dict[str, HybridIndex]: indices: Dict[str, HybridIndex] = {} for repo in MODEL_REPO_MAP.values(): print(f"→ Building index for {repo}…", flush=True) backend = EmbeddingBackend(repo) indices[repo] = HybridIndex(df, TEXT_COL, backend) return indices print("Loading corpus & initialising indices… (first run may take several minutes)") CORPUS_DF = load_corpus(CSV_PATH) INDICES = build_indices(CORPUS_DF) print("✅ All indices ready.") # -------------------------------------------------- # Search handler # -------------------------------------------------- def search(query: str, model_repo: str): if not query: raise gr.Error("Please enter a query.") if model_repo not in INDICES: raise gr.Error("Selected model is not indexed.") idx = INDICES[model_repo] rows = idx.exact_hits(query) if not rows: rows = idx.semantic_hits(query) subset_cols = [TEXT_COL] if IMAGE_COL and IMAGE_COL in CORPUS_DF.columns: subset_cols.append(IMAGE_COL) result_df = CORPUS_DF.iloc[rows][subset_cols] # -------- image gallery -------- gallery = [] if IMAGE_COL and IMAGE_COL in result_df.columns: for url in result_df[IMAGE_COL].dropna(): try: requests.head(url, timeout=2) gallery.append(url) except requests.RequestException: continue return result_df, gallery # -------------------------------------------------- # Gradio UI # -------------------------------------------------- with gr.Blocks(title="Hybrid RAG Search") as demo: gr.Markdown( """ # Hybrid Retrieval‑Augmented Search The dataset is pre‑indexed for **Qwen3‑0.6B**, **bge‑small‑en‑v1.5**, and **Stella‑1.5B‑v5**. * **Exact substring** match via Aho‑Corasick first. * **Semantic** top‑5 retrieval if no exact hit is found. """ ) with gr.Row(): model_sel = gr.Dropdown( choices=list(MODEL_REPO_MAP.keys()), label="Embedding Model", value="BAAI/bge-small-en-v1.5", ) query_box = gr.Textbox(label="Ask a question…", lines=2) search_btn = gr.Button("Search", variant="primary") results = gr.Dataframe(interactive=False) gallery = gr.Gallery(label="Images", columns=4, height="auto") search_btn.click(search, inputs=[query_box, model_sel], outputs=[results, gallery]) if __name__ == "__main__": demo.launch()