Spaces:
Runtime error
Runtime error
| import torch | |
| from diffusers import DiffusionPipeline, AutoencoderKL, UNet2DConditionModel | |
| from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor | |
| from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.image_processor import VaeImageProcessor | |
| from typing import List, Optional, Tuple, Union, Dict, Any | |
| from diffusers import logging | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class LatentConsistencyModelPipeline(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: None, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| requires_safety_checker: bool = True | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| prompt_embeds: None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| """ | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| if self.text_encoder is not None: | |
| prompt_embeds_dtype = self.text_encoder.dtype | |
| elif self.unet is not None: | |
| prompt_embeds_dtype = self.unet.dtype | |
| else: | |
| prompt_embeds_dtype = prompt_embeds.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # Don't need to get uncond prompt embedding because of LCM Guided Distillation | |
| return prompt_embeds | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if latents is None: | |
| latents = torch.randn(shape, dtype=dtype).to(device) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
| """ | |
| see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
| Args: | |
| timesteps: torch.Tensor: generate embedding vectors at these timesteps | |
| embedding_dim: int: dimension of the embeddings to generate | |
| dtype: data type of the generated embeddings | |
| Returns: | |
| embedding vectors with shape `(len(timesteps), embedding_dim)` | |
| """ | |
| assert len(w.shape) == 1 | |
| w = w * 1000. | |
| half_dim = embedding_dim // 2 | |
| emb = torch.log(torch.tensor(10000.)) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
| emb = w.to(dtype)[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1)) | |
| assert emb.shape == (w.shape[0], embedding_dim) | |
| return emb | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = 768, | |
| width: Optional[int] = 768, | |
| guidance_scale: float = 7.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| latents: Optional[torch.FloatTensor] = None, | |
| num_inference_steps: int = 4, | |
| lcm_origin_steps: int = 50, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| ): | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG) | |
| # 3. Encode input prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variable | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| latents, | |
| ) | |
| bs = batch_size * num_images_per_prompt | |
| # 6. Get Guidance Scale Embedding | |
| w = torch.tensor(guidance_scale).repeat(bs) | |
| w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device=device, dtype=latents.dtype) | |
| # 7. LCM MultiStep Sampling Loop: | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| ts = torch.full((bs,), t, device=device, dtype=torch.long) | |
| latents = latents.to(prompt_embeds.dtype) | |
| # model prediction (v-prediction, eps, x) | |
| model_pred = self.unet( | |
| latents, | |
| ts, | |
| timestep_cond=w_embedding, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False)[0] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents, denoised = self.scheduler.step(model_pred, i, t, latents, return_dict=False) | |
| # # call the callback, if provided | |
| # if i == len(timesteps) - 1: | |
| progress_bar.update() | |
| denoised = denoised.to(prompt_embeds.dtype) | |
| if not output_type == "latent": | |
| image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = denoised | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |