Update README.md and app.py for enhanced UI experience
Browse files
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: MetaCLIP
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.50.2
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: MetaCLIP
|
| 3 |
+
emoji: 👁️
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: orange
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.50.2
|
| 8 |
app_file: app.py
|
app.py
CHANGED
|
@@ -5,6 +5,16 @@ import numpy as np
|
|
| 5 |
from transformers import CLIPProcessor, CLIPModel
|
| 6 |
|
| 7 |
IMAGENET_CLASSES_FILE = "imagenet-classes.txt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def load_text_lines(file_path: str) -> List[str]:
|
|
@@ -31,12 +41,21 @@ def classify_image(input_image) -> str:
|
|
| 31 |
|
| 32 |
|
| 33 |
with gr.Blocks() as demo:
|
| 34 |
-
gr.Markdown(
|
| 35 |
with gr.Row():
|
| 36 |
image = gr.Image(image_mode='RGB', type='pil')
|
| 37 |
-
output_text = gr.Textbox()
|
| 38 |
-
|
| 39 |
|
| 40 |
submit_button.click(classify_image, inputs=[image], outputs=output_text)
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
demo.queue(max_size=64).launch(debug=False)
|
|
|
|
| 5 |
from transformers import CLIPProcessor, CLIPModel
|
| 6 |
|
| 7 |
IMAGENET_CLASSES_FILE = "imagenet-classes.txt"
|
| 8 |
+
EXAMPLES = ["dog.jpeg", "car.png"]
|
| 9 |
+
|
| 10 |
+
MARKDOWN = """
|
| 11 |
+
# Zero-Shot Image Classification with MetaCLIP
|
| 12 |
+
|
| 13 |
+
This is the demo for a zero-shot image classification model based on
|
| 14 |
+
[MetaCLIP](https://github.com/facebookresearch/MetaCLIP), described in the paper
|
| 15 |
+
[Demystifying CLIP Data](https://arxiv.org/abs/2309.16671) that formalizes CLIP data
|
| 16 |
+
curation as a simple algorithm.
|
| 17 |
+
"""
|
| 18 |
|
| 19 |
|
| 20 |
def load_text_lines(file_path: str) -> List[str]:
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
with gr.Blocks() as demo:
|
| 44 |
+
gr.Markdown(MARKDOWN)
|
| 45 |
with gr.Row():
|
| 46 |
image = gr.Image(image_mode='RGB', type='pil')
|
| 47 |
+
output_text = gr.Textbox(label="Output")
|
| 48 |
+
submit_button = gr.Button("Submit")
|
| 49 |
|
| 50 |
submit_button.click(classify_image, inputs=[image], outputs=output_text)
|
| 51 |
|
| 52 |
+
gr.Examples(
|
| 53 |
+
examples=EXAMPLES,
|
| 54 |
+
fn=classify_image,
|
| 55 |
+
inputs=[image],
|
| 56 |
+
outputs=[output_text],
|
| 57 |
+
cache_examples=True,
|
| 58 |
+
run_on_click=True
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
demo.queue(max_size=64).launch(debug=False)
|
car.png
ADDED
|
dog.jpeg
ADDED
|