Spaces:
Runtime error
Runtime error
Add mask generation to video processing pipeline
Browse files
app.py
CHANGED
|
@@ -1,23 +1,39 @@
|
|
|
|
|
| 1 |
import time
|
| 2 |
import uuid
|
| 3 |
from typing import Tuple
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import supervision as sv
|
|
|
|
| 7 |
from tqdm import tqdm
|
|
|
|
|
|
|
| 8 |
|
| 9 |
START_FRAME = 0
|
| 10 |
END_FRAME = 10
|
| 11 |
TOTAL = END_FRAME - START_FRAME
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
video_info = sv.VideoInfo.from_video_path(source_video)
|
| 22 |
frame_iterator = iter(sv.get_video_frames_generator(
|
| 23 |
source_path=source_video, start=START_FRAME, end=END_FRAME))
|
|
@@ -25,10 +41,22 @@ def process(
|
|
| 25 |
with sv.VideoSink(f"{name}.mp4", video_info=video_info) as sink:
|
| 26 |
for _ in tqdm(range(TOTAL), desc="Masking frames"):
|
| 27 |
frame = next(frame_iterator)
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
with gr.Blocks() as demo:
|
|
|
|
| 1 |
+
import torch
|
| 2 |
import time
|
| 3 |
import uuid
|
| 4 |
from typing import Tuple
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import supervision as sv
|
| 8 |
+
import numpy as np
|
| 9 |
from tqdm import tqdm
|
| 10 |
+
from transformers import pipeline
|
| 11 |
+
from PIL import Image
|
| 12 |
|
| 13 |
START_FRAME = 0
|
| 14 |
END_FRAME = 10
|
| 15 |
TOTAL = END_FRAME - START_FRAME
|
| 16 |
|
| 17 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
SAM_GENERATOR = pipeline(
|
| 19 |
+
task="mask-generation",
|
| 20 |
+
model="facebook/sam-vit-base",
|
| 21 |
+
device=DEVICE)
|
| 22 |
+
MASK_ANNOTATOR = sv.MaskAnnotator(
|
| 23 |
+
color=sv.Color.red(),
|
| 24 |
+
color_lookup=sv.ColorLookup.INDEX)
|
| 25 |
|
| 26 |
+
|
| 27 |
+
def run_sam(frame: np.ndarray) -> sv.Detections:
|
| 28 |
+
# convert from Numpy BGR to PIL RGB
|
| 29 |
+
image = Image.fromarray(frame[:, :, ::-1])
|
| 30 |
+
|
| 31 |
+
outputs = SAM_GENERATOR(image)
|
| 32 |
+
mask = np.array(outputs['masks'])
|
| 33 |
+
return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def mask_video(source_video: str, prompt: str, confidence: float, name: str) -> str:
|
| 37 |
video_info = sv.VideoInfo.from_video_path(source_video)
|
| 38 |
frame_iterator = iter(sv.get_video_frames_generator(
|
| 39 |
source_path=source_video, start=START_FRAME, end=END_FRAME))
|
|
|
|
| 41 |
with sv.VideoSink(f"{name}.mp4", video_info=video_info) as sink:
|
| 42 |
for _ in tqdm(range(TOTAL), desc="Masking frames"):
|
| 43 |
frame = next(frame_iterator)
|
| 44 |
+
detections = run_sam(frame)
|
| 45 |
+
annotated_frame = MASK_ANNOTATOR.annotate(
|
| 46 |
+
scene=frame.copy(), detections=detections)
|
| 47 |
+
sink.write_frame(annotated_frame)
|
| 48 |
+
return f"{name}.mp4"
|
| 49 |
+
|
| 50 |
|
| 51 |
+
def process(
|
| 52 |
+
source_video: str,
|
| 53 |
+
prompt: str,
|
| 54 |
+
confidence: float,
|
| 55 |
+
progress=gr.Progress(track_tqdm=True)
|
| 56 |
+
) -> Tuple[str, str]:
|
| 57 |
+
name = str(uuid.uuid4())
|
| 58 |
+
masked_video = mask_video(source_video, prompt, confidence, name)
|
| 59 |
+
return masked_video, masked_video
|
| 60 |
|
| 61 |
|
| 62 |
with gr.Blocks() as demo:
|