Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
YOLOv10 added
Browse files
README.md
CHANGED
|
@@ -7,7 +7,7 @@ sdk: gradio
|
|
| 7 |
sdk_version: 4.19.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 7 |
sdk_version: 4.19.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -6,7 +6,14 @@ import supervision as sv
|
|
| 6 |
from inference import get_model
|
| 7 |
|
| 8 |
MARKDOWN = """
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
|
| 12 |
[Supervision](https://github.com/roboflow/supervision).
|
|
@@ -16,77 +23,55 @@ IMAGE_EXAMPLES = [
|
|
| 16 |
['https://media.roboflow.com/dog.jpeg', 0.3]
|
| 17 |
]
|
| 18 |
|
| 19 |
-
YOLO_V8_MODEL = get_model(model_id="
|
| 20 |
-
YOLO_NAS_MODEL = get_model(model_id="coco/
|
| 21 |
YOLO_V9_MODEL = get_model(model_id="coco/17")
|
|
|
|
| 22 |
|
| 23 |
LABEL_ANNOTATORS = sv.LabelAnnotator(text_color=sv.Color.black())
|
| 24 |
BOUNDING_BOX_ANNOTATORS = sv.BoundingBoxAnnotator()
|
| 25 |
|
| 26 |
|
| 27 |
-
def
|
|
|
|
| 28 |
input_image: np.ndarray,
|
| 29 |
confidence_threshold: float,
|
| 30 |
iou_threshold: float
|
| 31 |
-
) ->
|
| 32 |
-
|
| 33 |
-
input_image,
|
| 34 |
-
confidence=confidence_threshold,
|
| 35 |
-
iou_threshold=iou_threshold
|
| 36 |
-
)[0]
|
| 37 |
-
yolo_v8_detections = sv.Detections.from_inference(yolo_v8_result)
|
| 38 |
-
|
| 39 |
-
labels = [
|
| 40 |
-
f"{class_name} {confidence:.2f}"
|
| 41 |
-
for class_name, confidence
|
| 42 |
-
in zip(yolo_v8_detections["class_name"], yolo_v8_detections.confidence)
|
| 43 |
-
]
|
| 44 |
-
|
| 45 |
-
yolo_v8_annotated_image = input_image.copy()
|
| 46 |
-
yolo_v8_annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
|
| 47 |
-
scene=yolo_v8_annotated_image, detections=yolo_v8_detections)
|
| 48 |
-
yolo_v8_annotated_image = LABEL_ANNOTATORS.annotate(
|
| 49 |
-
scene=yolo_v8_annotated_image, detections=yolo_v8_detections, labels=labels)
|
| 50 |
-
|
| 51 |
-
yolo_nas_result = YOLO_NAS_MODEL.infer(
|
| 52 |
-
input_image,
|
| 53 |
-
confidence=confidence_threshold,
|
| 54 |
-
iou_threshold=iou_threshold
|
| 55 |
-
)[0]
|
| 56 |
-
yolo_nas_detections = sv.Detections.from_inference(yolo_nas_result)
|
| 57 |
-
|
| 58 |
-
labels = [
|
| 59 |
-
f"{class_name} {confidence:.2f}"
|
| 60 |
-
for class_name, confidence
|
| 61 |
-
in zip(yolo_nas_detections["class_name"], yolo_nas_detections.confidence)
|
| 62 |
-
]
|
| 63 |
-
|
| 64 |
-
yolo_nas_annotated_image = input_image.copy()
|
| 65 |
-
yolo_nas_annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
|
| 66 |
-
scene=yolo_nas_annotated_image, detections=yolo_nas_detections)
|
| 67 |
-
yolo_nas_annotated_image = LABEL_ANNOTATORS.annotate(
|
| 68 |
-
scene=yolo_nas_annotated_image, detections=yolo_nas_detections, labels=labels)
|
| 69 |
-
|
| 70 |
-
yolo_v9_result = YOLO_V9_MODEL.infer(
|
| 71 |
input_image,
|
| 72 |
confidence=confidence_threshold,
|
| 73 |
iou_threshold=iou_threshold
|
| 74 |
)[0]
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
labels = [
|
| 78 |
-
f"{class_name} {confidence:.2f}"
|
| 79 |
-
for class_name, confidence
|
| 80 |
-
in zip(yolo_v9_detections["class_name"], yolo_v9_detections.confidence)
|
| 81 |
-
]
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
confidence_threshold_component = gr.Slider(
|
|
@@ -125,21 +110,27 @@ with gr.Blocks() as demo:
|
|
| 125 |
with gr.Row():
|
| 126 |
input_image_component = gr.Image(
|
| 127 |
type='numpy',
|
| 128 |
-
label='Input
|
| 129 |
-
)
|
| 130 |
-
yolo_v8_output_image_component = gr.Image(
|
| 131 |
-
type='numpy',
|
| 132 |
-
label='YOLOv8 Output'
|
| 133 |
-
)
|
| 134 |
-
with gr.Row():
|
| 135 |
-
yolo_nas_output_image_component = gr.Image(
|
| 136 |
-
type='numpy',
|
| 137 |
-
label='YOLO-NAS Output'
|
| 138 |
-
)
|
| 139 |
-
yolo_v9_output_image_component = gr.Image(
|
| 140 |
-
type='numpy',
|
| 141 |
-
label='YOLOv9 Output'
|
| 142 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
submit_button_component = gr.Button(
|
| 144 |
value='Submit',
|
| 145 |
scale=1,
|
|
@@ -156,7 +147,8 @@ with gr.Blocks() as demo:
|
|
| 156 |
outputs=[
|
| 157 |
yolo_v8_output_image_component,
|
| 158 |
yolo_nas_output_image_component,
|
| 159 |
-
yolo_v9_output_image_component
|
|
|
|
| 160 |
]
|
| 161 |
)
|
| 162 |
|
|
@@ -170,7 +162,8 @@ with gr.Blocks() as demo:
|
|
| 170 |
outputs=[
|
| 171 |
yolo_v8_output_image_component,
|
| 172 |
yolo_nas_output_image_component,
|
| 173 |
-
yolo_v9_output_image_component
|
|
|
|
| 174 |
]
|
| 175 |
)
|
| 176 |
|
|
|
|
| 6 |
from inference import get_model
|
| 7 |
|
| 8 |
MARKDOWN = """
|
| 9 |
+
<h1 style='text-align: center'>YOLO-ARENA 🏟️</h1>
|
| 10 |
+
|
| 11 |
+
Welcome to YOLO-Arena! This demo showcases the performance of various YOLO models:
|
| 12 |
+
|
| 13 |
+
- YOLOv8
|
| 14 |
+
- YOLOv9
|
| 15 |
+
- YOLOv10
|
| 16 |
+
- YOLO-NAS
|
| 17 |
|
| 18 |
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
|
| 19 |
[Supervision](https://github.com/roboflow/supervision).
|
|
|
|
| 23 |
['https://media.roboflow.com/dog.jpeg', 0.3]
|
| 24 |
]
|
| 25 |
|
| 26 |
+
YOLO_V8_MODEL = get_model(model_id="yolov8m-640")
|
| 27 |
+
YOLO_NAS_MODEL = get_model(model_id="coco/15")
|
| 28 |
YOLO_V9_MODEL = get_model(model_id="coco/17")
|
| 29 |
+
YOLO_V10_MODEL = get_model(model_id="coco/22")
|
| 30 |
|
| 31 |
LABEL_ANNOTATORS = sv.LabelAnnotator(text_color=sv.Color.black())
|
| 32 |
BOUNDING_BOX_ANNOTATORS = sv.BoundingBoxAnnotator()
|
| 33 |
|
| 34 |
|
| 35 |
+
def detect_and_annotate(
|
| 36 |
+
model,
|
| 37 |
input_image: np.ndarray,
|
| 38 |
confidence_threshold: float,
|
| 39 |
iou_threshold: float
|
| 40 |
+
) -> np.ndarray:
|
| 41 |
+
result = model.infer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
input_image,
|
| 43 |
confidence=confidence_threshold,
|
| 44 |
iou_threshold=iou_threshold
|
| 45 |
)[0]
|
| 46 |
+
detections = sv.Detections.from_inference(result)
|
| 47 |
+
annotated_image = input_image.copy()
|
| 48 |
+
annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
|
| 49 |
+
scene=annotated_image, detections=detections)
|
| 50 |
+
annotated_image = LABEL_ANNOTATORS.annotate(
|
| 51 |
+
scene=annotated_image, detections=detections)
|
| 52 |
+
return annotated_image
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
def process_image(
|
| 56 |
+
input_image: np.ndarray,
|
| 57 |
+
confidence_threshold: float,
|
| 58 |
+
iou_threshold: float
|
| 59 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
| 60 |
+
yolo_v8_annotated_image = detect_and_annotate(
|
| 61 |
+
YOLO_V8_MODEL, input_image, confidence_threshold, iou_threshold)
|
| 62 |
+
yolo_nas_annotated_image = detect_and_annotate(
|
| 63 |
+
YOLO_NAS_MODEL, input_image, confidence_threshold, iou_threshold)
|
| 64 |
+
yolo_v9_annotated_image = detect_and_annotate(
|
| 65 |
+
YOLO_V9_MODEL, input_image, confidence_threshold, iou_threshold)
|
| 66 |
+
yolo_10_annotated_image = detect_and_annotate(
|
| 67 |
+
YOLO_V10_MODEL, input_image, confidence_threshold, iou_threshold)
|
| 68 |
+
|
| 69 |
+
return (
|
| 70 |
+
yolo_v8_annotated_image,
|
| 71 |
+
yolo_nas_annotated_image,
|
| 72 |
+
yolo_v9_annotated_image,
|
| 73 |
+
yolo_10_annotated_image
|
| 74 |
+
)
|
| 75 |
|
| 76 |
|
| 77 |
confidence_threshold_component = gr.Slider(
|
|
|
|
| 110 |
with gr.Row():
|
| 111 |
input_image_component = gr.Image(
|
| 112 |
type='numpy',
|
| 113 |
+
label='Input'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
)
|
| 115 |
+
with gr.Column():
|
| 116 |
+
with gr.Row():
|
| 117 |
+
yolo_v8_output_image_component = gr.Image(
|
| 118 |
+
type='numpy',
|
| 119 |
+
label='YOLOv8m @ 640x640'
|
| 120 |
+
)
|
| 121 |
+
yolo_nas_output_image_component = gr.Image(
|
| 122 |
+
type='numpy',
|
| 123 |
+
label='YOLO-NAS M @ 640x640'
|
| 124 |
+
)
|
| 125 |
+
with gr.Row():
|
| 126 |
+
yolo_v9_output_image_component = gr.Image(
|
| 127 |
+
type='numpy',
|
| 128 |
+
label='YOLOv9c @ 640x640'
|
| 129 |
+
)
|
| 130 |
+
yolo_v10_output_image_component = gr.Image(
|
| 131 |
+
type='numpy',
|
| 132 |
+
label='YOLOv10m @ 640x640'
|
| 133 |
+
)
|
| 134 |
submit_button_component = gr.Button(
|
| 135 |
value='Submit',
|
| 136 |
scale=1,
|
|
|
|
| 147 |
outputs=[
|
| 148 |
yolo_v8_output_image_component,
|
| 149 |
yolo_nas_output_image_component,
|
| 150 |
+
yolo_v9_output_image_component,
|
| 151 |
+
yolo_v10_output_image_component
|
| 152 |
]
|
| 153 |
)
|
| 154 |
|
|
|
|
| 162 |
outputs=[
|
| 163 |
yolo_v8_output_image_component,
|
| 164 |
yolo_nas_output_image_component,
|
| 165 |
+
yolo_v9_output_image_component,
|
| 166 |
+
yolo_v10_output_image_component
|
| 167 |
]
|
| 168 |
)
|
| 169 |
|