Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
allow to set different confidence thresholds per model
Browse files
app.py
CHANGED
|
@@ -52,9 +52,9 @@ Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
|
|
| 52 |
"""
|
| 53 |
|
| 54 |
IMAGE_EXAMPLES = [
|
| 55 |
-
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.
|
| 56 |
-
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.
|
| 57 |
-
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.
|
| 58 |
]
|
| 59 |
|
| 60 |
YOLO_V8_MODEL = get_model(model_id="coco/8")
|
|
@@ -102,15 +102,17 @@ def detect_and_annotate(
|
|
| 102 |
|
| 103 |
def process_image(
|
| 104 |
input_image: np.ndarray,
|
| 105 |
-
|
|
|
|
|
|
|
| 106 |
iou_threshold: float
|
| 107 |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 108 |
yolo_v8_annotated_image = detect_and_annotate(
|
| 109 |
-
YOLO_V8_MODEL, input_image,
|
| 110 |
yolo_v9_annotated_image = detect_and_annotate(
|
| 111 |
-
YOLO_V9_MODEL, input_image,
|
| 112 |
yolo_10_annotated_image = detect_and_annotate(
|
| 113 |
-
YOLO_V10_MODEL, input_image,
|
| 114 |
|
| 115 |
return (
|
| 116 |
yolo_v8_annotated_image,
|
|
@@ -119,12 +121,38 @@ def process_image(
|
|
| 119 |
)
|
| 120 |
|
| 121 |
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
minimum=0,
|
| 124 |
maximum=1.0,
|
| 125 |
value=0.3,
|
| 126 |
step=0.01,
|
| 127 |
-
label="Confidence Threshold",
|
| 128 |
info=(
|
| 129 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
| 130 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
|
@@ -150,7 +178,10 @@ iou_threshold_component = gr.Slider(
|
|
| 150 |
with gr.Blocks() as demo:
|
| 151 |
gr.Markdown(MARKDOWN)
|
| 152 |
with gr.Accordion("Configuration", open=False):
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
| 154 |
iou_threshold_component.render()
|
| 155 |
with gr.Row():
|
| 156 |
input_image_component = gr.Image(
|
|
@@ -180,7 +211,9 @@ with gr.Blocks() as demo:
|
|
| 180 |
examples=IMAGE_EXAMPLES,
|
| 181 |
inputs=[
|
| 182 |
input_image_component,
|
| 183 |
-
|
|
|
|
|
|
|
| 184 |
iou_threshold_component
|
| 185 |
],
|
| 186 |
outputs=[
|
|
@@ -194,7 +227,9 @@ with gr.Blocks() as demo:
|
|
| 194 |
fn=process_image,
|
| 195 |
inputs=[
|
| 196 |
input_image_component,
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
iou_threshold_component
|
| 199 |
],
|
| 200 |
outputs=[
|
|
|
|
| 52 |
"""
|
| 53 |
|
| 54 |
IMAGE_EXAMPLES = [
|
| 55 |
+
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, 0.3, 0.1],
|
| 56 |
+
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, 0.3, 0.1],
|
| 57 |
+
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.3, 0.3, 0.1],
|
| 58 |
]
|
| 59 |
|
| 60 |
YOLO_V8_MODEL = get_model(model_id="coco/8")
|
|
|
|
| 102 |
|
| 103 |
def process_image(
|
| 104 |
input_image: np.ndarray,
|
| 105 |
+
yolo_v8_confidence_threshold: float,
|
| 106 |
+
yolo_v9_confidence_threshold: float,
|
| 107 |
+
yolo_v10_confidence_threshold: float,
|
| 108 |
iou_threshold: float
|
| 109 |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 110 |
yolo_v8_annotated_image = detect_and_annotate(
|
| 111 |
+
YOLO_V8_MODEL, input_image, yolo_v8_confidence_threshold, iou_threshold)
|
| 112 |
yolo_v9_annotated_image = detect_and_annotate(
|
| 113 |
+
YOLO_V9_MODEL, input_image, yolo_v9_confidence_threshold, iou_threshold)
|
| 114 |
yolo_10_annotated_image = detect_and_annotate(
|
| 115 |
+
YOLO_V10_MODEL, input_image, yolo_v10_confidence_threshold, iou_threshold)
|
| 116 |
|
| 117 |
return (
|
| 118 |
yolo_v8_annotated_image,
|
|
|
|
| 121 |
)
|
| 122 |
|
| 123 |
|
| 124 |
+
yolo_v8_confidence_threshold_component = gr.Slider(
|
| 125 |
+
minimum=0,
|
| 126 |
+
maximum=1.0,
|
| 127 |
+
value=0.3,
|
| 128 |
+
step=0.01,
|
| 129 |
+
label="YOLOv8 Confidence Threshold",
|
| 130 |
+
info=(
|
| 131 |
+
"The confidence threshold for the YOLO model. Lower the threshold to "
|
| 132 |
+
"reduce false negatives, enhancing the model's sensitivity to detect "
|
| 133 |
+
"sought-after objects. Conversely, increase the threshold to minimize false "
|
| 134 |
+
"positives, preventing the model from identifying objects it shouldn't."
|
| 135 |
+
))
|
| 136 |
+
|
| 137 |
+
yolo_v9_confidence_threshold_component = gr.Slider(
|
| 138 |
+
minimum=0,
|
| 139 |
+
maximum=1.0,
|
| 140 |
+
value=0.3,
|
| 141 |
+
step=0.01,
|
| 142 |
+
label="YOLOv9 Confidence Threshold",
|
| 143 |
+
info=(
|
| 144 |
+
"The confidence threshold for the YOLO model. Lower the threshold to "
|
| 145 |
+
"reduce false negatives, enhancing the model's sensitivity to detect "
|
| 146 |
+
"sought-after objects. Conversely, increase the threshold to minimize false "
|
| 147 |
+
"positives, preventing the model from identifying objects it shouldn't."
|
| 148 |
+
))
|
| 149 |
+
|
| 150 |
+
yolo_v10_confidence_threshold_component = gr.Slider(
|
| 151 |
minimum=0,
|
| 152 |
maximum=1.0,
|
| 153 |
value=0.3,
|
| 154 |
step=0.01,
|
| 155 |
+
label="YOLOv10 Confidence Threshold",
|
| 156 |
info=(
|
| 157 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
| 158 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
|
|
|
| 178 |
with gr.Blocks() as demo:
|
| 179 |
gr.Markdown(MARKDOWN)
|
| 180 |
with gr.Accordion("Configuration", open=False):
|
| 181 |
+
with gr.Row():
|
| 182 |
+
yolo_v8_confidence_threshold_component.render()
|
| 183 |
+
yolo_v9_confidence_threshold_component.render()
|
| 184 |
+
yolo_v10_confidence_threshold_component.render()
|
| 185 |
iou_threshold_component.render()
|
| 186 |
with gr.Row():
|
| 187 |
input_image_component = gr.Image(
|
|
|
|
| 211 |
examples=IMAGE_EXAMPLES,
|
| 212 |
inputs=[
|
| 213 |
input_image_component,
|
| 214 |
+
yolo_v8_confidence_threshold_component,
|
| 215 |
+
yolo_v9_confidence_threshold_component,
|
| 216 |
+
yolo_v10_confidence_threshold_component,
|
| 217 |
iou_threshold_component
|
| 218 |
],
|
| 219 |
outputs=[
|
|
|
|
| 227 |
fn=process_image,
|
| 228 |
inputs=[
|
| 229 |
input_image_component,
|
| 230 |
+
yolo_v8_confidence_threshold_component,
|
| 231 |
+
yolo_v9_confidence_threshold_component,
|
| 232 |
+
yolo_v10_confidence_threshold_component,
|
| 233 |
iou_threshold_component
|
| 234 |
],
|
| 235 |
outputs=[
|