Snxt1 commited on
Commit
73bd487
Β·
verified Β·
1 Parent(s): 6e031de

Update app.py

Browse files

Adding skew ratio & momentum, cleaning up the visual.

Files changed (1) hide show
  1. app.py +79 -51
app.py CHANGED
@@ -90,7 +90,7 @@ def load_columns(file):
90
  def update_ma_visibility(add_ma):
91
  return gr.Slider(visible=add_ma)
92
 
93
- def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_length, confidence, add_trendline, add_moving_average, ma_window):
94
  if file is None or time_col is None or selected_col is None:
95
  return None, "### Error\nPlease upload a CSV and select time and value columns!"
96
 
@@ -162,8 +162,11 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
162
  lower_slider = np.zeros(pred_len)
163
  upper_slider = np.zeros(pred_len)
164
 
 
 
165
  skew_directions = []
166
 
 
167
  for t in range(pred_len):
168
  q_t = q[t]
169
  lower50[t] = np.interp(lower_alpha_50, alphas, q_t)
@@ -175,9 +178,19 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
175
  med = median[t]
176
  upside_dist = upper_slider[t] - med
177
  downside_dist = med - lower_slider[t]
178
- if upside_dist > downside_dist:
 
 
 
 
 
 
 
 
 
 
179
  skew_directions.append("Upside")
180
- elif downside_dist > upside_dist:
181
  skew_directions.append("Downside")
182
  else:
183
  skew_directions.append("Neutral")
@@ -198,35 +211,44 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
198
  'predicted_sales_lower': lower_slider,
199
  'predicted_sales_upper': upper_slider,
200
  'predicted_sales_mean': mean_forecast,
201
- 'skew_direction': skew_directions
 
 
202
  }).set_index('date')
203
 
204
  # Count skews for summary
205
- upside_count = skew_directions.count("Upside")
206
- downside_count = skew_directions.count("Downside")
207
- neutral_count = skew_directions.count("Neutral")
 
 
 
 
208
 
209
  # Prepare markdown output (broken into smaller strings to avoid multiline f-string parsing issues)
210
  markdown_text = "### Summary\n"
211
  markdown_text += "- **Number of Historical Periods Used:** {} points\n".format(len(context_series))
212
  markdown_text += "- **Held Out Periods:** {} points {}\n".format(len(held_out_df), "(Full Context Used)" if len(held_out_df) == 0 else "(For Validation)")
213
  markdown_text += "- **Prediction Length:** {} periods\n".format(pred_len)
214
- markdown_text += "- **Confidence Level:** {}% (alphas: {:.3f} - {:.3f})\n".format(confidence, lower_alpha_slider, upper_alpha_slider)
215
  markdown_text += "- **Sum of Median Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_median'].sum())
216
  markdown_text += "- **Sum of Mean Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_mean'].sum())
217
- markdown_text += "- **Skew Distribution:** {} Upside, {} Downside, {} Neutral\n\n".format(upside_count, downside_count, neutral_count)
 
218
 
219
- forecast_table = "### TiRex Forecast Results (Median + {}% Interval)\n\n".format(confidence)
220
- forecast_table += "| Date | Median | Lower Bound | Upper Bound | Mean | Skew |\n"
221
- forecast_table += "|------|--------|-------------|-------------|------|------|\n"
222
  for idx, row in pred_df.iterrows():
223
- forecast_table += "| {} | {:.2f} | {:.2f} | {:.2f} | {:.2f} | {} |\n".format(
224
  idx.strftime('%Y-%m-%d'),
225
  row['predicted_sales_median'],
226
  row['predicted_sales_lower'],
227
  row['predicted_sales_upper'],
228
  row['predicted_sales_mean'],
229
- row['skew_direction']
 
 
230
  )
231
 
232
  sample_data = "### Sample Historical Data (Context)\n"
@@ -235,9 +257,12 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
235
  markdown_text += f'\n<details><summary>Click to expand Forecast Table</summary>\n\n{forecast_table}\n</details>\n\n'
236
  markdown_text += f'<details><summary>Click to expand Sample Historical Data</summary>\n\n{sample_data}\n</details>'
237
 
238
- # Create plot
239
  fig, ax = plt.subplots(figsize=(14, 7))
240
- ax.plot(context_df.index, context_df['sales'], label=f'Used Historical {selected_col}', color='#1f77b4', linewidth=1.5, alpha=0.8)
 
 
 
241
  if not held_out_df.empty:
242
  ax.plot(held_out_df.index, held_out_df['sales'], label='Held Out Actual (Validation)', color='#2ca02c', linestyle=':', linewidth=2)
243
 
@@ -254,47 +279,46 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
254
  ma = context_df['sales'].rolling(window=window, min_periods=1).mean()
255
  ax.plot(context_df.index, ma, label=f'Moving Average ({window} periods)', color='purple', linewidth=2)
256
 
257
- ax.plot(pred_df.index, pred_df['predicted_sales_mean'], label='TiRex Forecast (Mean)', color='#ff7f0e', linestyle='--', linewidth=2)
 
258
 
259
  # Fan chart: non-overlapping bands
260
  # Inner 50% (lightest, center)
261
  ax.fill_between(pred_df.index, lower50, upper50,
262
- color='#d62728', alpha=0.1, label='50% Uncertainty')
263
  # Wings: between 50% and slider level (medium)
264
  ax.fill_between(pred_df.index, lower_slider, lower50,
265
- color='#d62728', alpha=0.3)
266
  ax.fill_between(pred_df.index, upper50, upper_slider,
267
- color='#d62728', alpha=0.3, label=f'{confidence}% Uncertainty Wings')
268
-
269
- # Subtle skew visualization: colored segments on the median forecast line
270
- from matplotlib.lines import Line2D
271
- legend_elements = []
272
-
273
- skew_colors = {'Upside': 'green', 'Downside': 'red', 'Neutral': 'gray'}
274
- for i in range(len(pred_df) - 1):
275
- start_date = pred_df.index[i]
276
- end_date = pred_df.index[i + 1]
277
- start_val = median[i]
278
- end_val = median[i + 1]
279
- skew = skew_directions[i]
280
- color = skew_colors[skew]
281
- ax.plot([start_date, end_date], [start_val, end_val], color=color, linewidth=2.5, alpha=0.7)
282
-
283
- # Connect the last point if needed, but since segments cover, add a small marker at end if desired
284
- ax.plot(pred_df.index[-1], median[-1], marker='o', color=skew_colors[skew_directions[-1]], markersize=4, alpha=0.7)
285
-
286
- # Add to legend only if present
287
- if upside_count > 0:
288
- legend_elements.append(Line2D([0], [0], color='green', lw=2, label='Upside Skew'))
289
- if downside_count > 0:
290
- legend_elements.append(Line2D([0], [0], color='red', lw=2, label='Downside Skew'))
291
- if neutral_count > 0:
292
- legend_elements.append(Line2D([0], [0], color='gray', lw=2, label='Neutral Skew'))
293
 
294
  ax.set_title(f'{selected_col} Forecast with TiRex (Context: {context_start+1}-{context_end}, Horizon: {pred_len})', fontsize=16, fontweight='bold')
295
  ax.set_xlabel('Date', fontsize=12)
296
  ax.set_ylabel(selected_col, fontsize=12)
297
- ax.legend(handles=ax.get_legend_handles_labels()[0] + legend_elements, fontsize=10)
 
 
 
 
 
 
 
 
298
  ax.tick_params(axis='x', rotation=45)
299
  plt.tight_layout()
300
 
@@ -318,7 +342,7 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="red"), ti
318
  }
319
  </style>
320
  """)
321
-
322
  gr.Markdown("""
323
  # TiRex Forecaster Dashboard
324
  Upload a CSV file with a time column and numeric columns. Select the time column and one numeric column to forecast future values using the TiRex model.
@@ -361,7 +385,7 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="red"), ti
361
  )
362
  confidence = gr.Slider(
363
  minimum=50, maximum=95, value=80, step=5,
364
- label="Confidence Level (%)",
365
  elem_id="confidence"
366
  )
367
  trend_checkbox = gr.Checkbox(
@@ -378,6 +402,10 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="red"), ti
378
  elem_id="ma_window",
379
  visible=False
380
  )
 
 
 
 
381
  run_button = gr.Button(
382
  "Run forecast",
383
  variant="primary",
@@ -414,9 +442,9 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="red"), ti
414
  # Event for running forecast
415
  run_button.click(
416
  run_forecast,
417
- inputs=[csv_file, time_dropdown, column_dropdown, start_slider, end_slider, prediction_length, confidence, trend_checkbox, ma_checkbox, ma_slider],
418
  outputs=[forecast_plot, output_text]
419
  )
420
 
421
- # Launch the app
422
- demo.launch()
 
90
  def update_ma_visibility(add_ma):
91
  return gr.Slider(visible=add_ma)
92
 
93
+ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_length, confidence, add_trendline, add_moving_average, ma_window, add_skew_viz):
94
  if file is None or time_col is None or selected_col is None:
95
  return None, "### Error\nPlease upload a CSV and select time and value columns!"
96
 
 
162
  lower_slider = np.zeros(pred_len)
163
  upper_slider = np.zeros(pred_len)
164
 
165
+ skew_ratios = np.zeros(pred_len)
166
+ delta_skews = np.zeros(pred_len)
167
  skew_directions = []
168
 
169
+ epsilon = 1e-8
170
  for t in range(pred_len):
171
  q_t = q[t]
172
  lower50[t] = np.interp(lower_alpha_50, alphas, q_t)
 
178
  med = median[t]
179
  upside_dist = upper_slider[t] - med
180
  downside_dist = med - lower_slider[t]
181
+ total_dist = upside_dist + downside_dist + epsilon
182
+ skew_ratios[t] = (upside_dist - downside_dist) / total_dist
183
+
184
+ # Delta for momentum (shift from previous step)
185
+ if t == 0:
186
+ delta_skews[t] = 0.0
187
+ else:
188
+ delta_skews[t] = skew_ratios[t] - skew_ratios[t-1]
189
+
190
+ # Existing categorical (optional: derive from skew_ratio for compat)
191
+ if skew_ratios[t] > 0.1:
192
  skew_directions.append("Upside")
193
+ elif skew_ratios[t] < -0.1:
194
  skew_directions.append("Downside")
195
  else:
196
  skew_directions.append("Neutral")
 
211
  'predicted_sales_lower': lower_slider,
212
  'predicted_sales_upper': upper_slider,
213
  'predicted_sales_mean': mean_forecast,
214
+ 'skew_direction': skew_directions,
215
+ 'skew_ratio': skew_ratios,
216
+ 'delta_skew': delta_skews
217
  }).set_index('date')
218
 
219
  # Count skews for summary
220
+ upside_count = sum(1 for r in skew_ratios if r > 0.1)
221
+ downside_count = sum(1 for r in skew_ratios if r < -0.1)
222
+ neutral_count = pred_len - upside_count - downside_count
223
+
224
+ # NEW: Summary stats for skew momentum
225
+ avg_skew = skew_ratios.mean()
226
+ max_momentum_shift = abs(delta_skews).max()
227
 
228
  # Prepare markdown output (broken into smaller strings to avoid multiline f-string parsing issues)
229
  markdown_text = "### Summary\n"
230
  markdown_text += "- **Number of Historical Periods Used:** {} points\n".format(len(context_series))
231
  markdown_text += "- **Held Out Periods:** {} points {}\n".format(len(held_out_df), "(Full Context Used)" if len(held_out_df) == 0 else "(For Validation)")
232
  markdown_text += "- **Prediction Length:** {} periods\n".format(pred_len)
233
+ markdown_text += "- **Prediction Interval:** {}% (alphas: {:.3f} - {:.3f})\n".format(confidence, lower_alpha_slider, upper_alpha_slider)
234
  markdown_text += "- **Sum of Median Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_median'].sum())
235
  markdown_text += "- **Sum of Mean Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_mean'].sum())
236
+ markdown_text += "- **Skew Distribution:** {} Upside, {} Downside, {} Neutral\n".format(upside_count, downside_count, neutral_count)
237
+ markdown_text += "- **Average Skew Ratio:** {:.3f} (momentum: max |Ξ”| = {:.3f})\n\n".format(avg_skew, max_momentum_shift)
238
 
239
+ forecast_table = "### TiRex Forecast Results (Median + {}% Prediction Interval)\n\n".format(confidence)
240
+ forecast_table += "| Date | Median | Lower Bound | Upper Bound | Mean | Skew Direction | Skew Ratio | Ξ” Skew |\n"
241
+ forecast_table += "|------|--------|-------------|-------------|------|----------------|------------|--------|\n"
242
  for idx, row in pred_df.iterrows():
243
+ forecast_table += "| {} | {:.2f} | {:.2f} | {:.2f} | {:.2f} | {} | {:.3f} | {:.3f} |\n".format(
244
  idx.strftime('%Y-%m-%d'),
245
  row['predicted_sales_median'],
246
  row['predicted_sales_lower'],
247
  row['predicted_sales_upper'],
248
  row['predicted_sales_mean'],
249
+ row['skew_direction'],
250
+ row['skew_ratio'],
251
+ row['delta_skew']
252
  )
253
 
254
  sample_data = "### Sample Historical Data (Context)\n"
 
257
  markdown_text += f'\n<details><summary>Click to expand Forecast Table</summary>\n\n{forecast_table}\n</details>\n\n'
258
  markdown_text += f'<details><summary>Click to expand Sample Historical Data</summary>\n\n{sample_data}\n</details>'
259
 
260
+ # Create plot (single subplot)
261
  fig, ax = plt.subplots(figsize=(14, 7))
262
+ fig.set_dpi(300) # High resolution for PNG zoom
263
+
264
+ # Historical and held-out
265
+ ax.plot(context_df.index, context_df['sales'], label='Historical Data', color='#1f77b4', linewidth=1.5, alpha=0.8)
266
  if not held_out_df.empty:
267
  ax.plot(held_out_df.index, held_out_df['sales'], label='Held Out Actual (Validation)', color='#2ca02c', linestyle=':', linewidth=2)
268
 
 
279
  ma = context_df['sales'].rolling(window=window, min_periods=1).mean()
280
  ax.plot(context_df.index, ma, label=f'Moving Average ({window} periods)', color='purple', linewidth=2)
281
 
282
+ # Median forecast: regular green line
283
+ ax.plot(pred_df.index, median, label='Median Forecast', color='green', linewidth=2, alpha=0.9)
284
 
285
  # Fan chart: non-overlapping bands
286
  # Inner 50% (lightest, center)
287
  ax.fill_between(pred_df.index, lower50, upper50,
288
+ color='#d62728', alpha=0.1, label='50% Prediction Interval')
289
  # Wings: between 50% and slider level (medium)
290
  ax.fill_between(pred_df.index, lower_slider, lower50,
291
+ color='#d62728', alpha=0.3)
292
  ax.fill_between(pred_df.index, upper50, upper_slider,
293
+ color='#d62728', alpha=0.3, label=f'{confidence}% Prediction Interval')
294
+
295
+ # Optional skew visualization on twin axis (light lines)
296
+ skew_handles = []
297
+ if add_skew_viz:
298
+ ax2 = ax.twinx()
299
+ # Light line for skew_ratio
300
+ line1, = ax2.plot(pred_df.index, skew_ratios, label='Skew Ratio', color='lightblue', linewidth=1, alpha=0.6)
301
+ skew_handles.append(line1)
302
+ # Light line for delta_skew (momentum) - milder color
303
+ line2, = ax2.plot(pred_df.index, delta_skews, label='Skew Momentum', color='lightgray', linewidth=1, alpha=0.6)
304
+ skew_handles.append(line2)
305
+ ax2.set_ylabel('Skew (-1 to 1)', color='lightblue')
306
+ ax2.tick_params(colors='lightblue')
307
+ # Set limits for visibility
308
+ ax2.set_ylim(-1.2, 1.2)
 
 
 
 
 
 
 
 
 
 
309
 
310
  ax.set_title(f'{selected_col} Forecast with TiRex (Context: {context_start+1}-{context_end}, Horizon: {pred_len})', fontsize=16, fontweight='bold')
311
  ax.set_xlabel('Date', fontsize=12)
312
  ax.set_ylabel(selected_col, fontsize=12)
313
+
314
+ # Combined legend to avoid overlap
315
+ if add_skew_viz:
316
+ handles1, labels1 = ax.get_legend_handles_labels()
317
+ handles2, labels2 = ax2.get_legend_handles_labels()
318
+ ax.legend(handles1 + handles2, labels1 + labels2, fontsize=10, loc='upper left')
319
+ else:
320
+ ax.legend(fontsize=10)
321
+
322
  ax.tick_params(axis='x', rotation=45)
323
  plt.tight_layout()
324
 
 
342
  }
343
  </style>
344
  """)
345
+
346
  gr.Markdown("""
347
  # TiRex Forecaster Dashboard
348
  Upload a CSV file with a time column and numeric columns. Select the time column and one numeric column to forecast future values using the TiRex model.
 
385
  )
386
  confidence = gr.Slider(
387
  minimum=50, maximum=95, value=80, step=5,
388
+ label="Prediction Interval (%)",
389
  elem_id="confidence"
390
  )
391
  trend_checkbox = gr.Checkbox(
 
402
  elem_id="ma_window",
403
  visible=False
404
  )
405
+ skew_checkbox = gr.Checkbox(
406
+ label="Add Skew Ratio & Momentum",
407
+ value=False
408
+ )
409
  run_button = gr.Button(
410
  "Run forecast",
411
  variant="primary",
 
442
  # Event for running forecast
443
  run_button.click(
444
  run_forecast,
445
+ inputs=[csv_file, time_dropdown, column_dropdown, start_slider, end_slider, prediction_length, confidence, trend_checkbox, ma_checkbox, ma_slider, skew_checkbox],
446
  outputs=[forecast_plot, output_text]
447
  )
448
 
449
+ if __name__ == "__main__":
450
+ demo.launch()