Spaces:
Running
Running
Update app.py
Browse filesAdding skew ratio & momentum, cleaning up the visual.
app.py
CHANGED
|
@@ -90,7 +90,7 @@ def load_columns(file):
|
|
| 90 |
def update_ma_visibility(add_ma):
|
| 91 |
return gr.Slider(visible=add_ma)
|
| 92 |
|
| 93 |
-
def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_length, confidence, add_trendline, add_moving_average, ma_window):
|
| 94 |
if file is None or time_col is None or selected_col is None:
|
| 95 |
return None, "### Error\nPlease upload a CSV and select time and value columns!"
|
| 96 |
|
|
@@ -162,8 +162,11 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
|
|
| 162 |
lower_slider = np.zeros(pred_len)
|
| 163 |
upper_slider = np.zeros(pred_len)
|
| 164 |
|
|
|
|
|
|
|
| 165 |
skew_directions = []
|
| 166 |
|
|
|
|
| 167 |
for t in range(pred_len):
|
| 168 |
q_t = q[t]
|
| 169 |
lower50[t] = np.interp(lower_alpha_50, alphas, q_t)
|
|
@@ -175,9 +178,19 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
|
|
| 175 |
med = median[t]
|
| 176 |
upside_dist = upper_slider[t] - med
|
| 177 |
downside_dist = med - lower_slider[t]
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
skew_directions.append("Upside")
|
| 180 |
-
elif
|
| 181 |
skew_directions.append("Downside")
|
| 182 |
else:
|
| 183 |
skew_directions.append("Neutral")
|
|
@@ -198,35 +211,44 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
|
|
| 198 |
'predicted_sales_lower': lower_slider,
|
| 199 |
'predicted_sales_upper': upper_slider,
|
| 200 |
'predicted_sales_mean': mean_forecast,
|
| 201 |
-
'skew_direction': skew_directions
|
|
|
|
|
|
|
| 202 |
}).set_index('date')
|
| 203 |
|
| 204 |
# Count skews for summary
|
| 205 |
-
upside_count =
|
| 206 |
-
downside_count =
|
| 207 |
-
neutral_count =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
# Prepare markdown output (broken into smaller strings to avoid multiline f-string parsing issues)
|
| 210 |
markdown_text = "### Summary\n"
|
| 211 |
markdown_text += "- **Number of Historical Periods Used:** {} points\n".format(len(context_series))
|
| 212 |
markdown_text += "- **Held Out Periods:** {} points {}\n".format(len(held_out_df), "(Full Context Used)" if len(held_out_df) == 0 else "(For Validation)")
|
| 213 |
markdown_text += "- **Prediction Length:** {} periods\n".format(pred_len)
|
| 214 |
-
markdown_text += "- **
|
| 215 |
markdown_text += "- **Sum of Median Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_median'].sum())
|
| 216 |
markdown_text += "- **Sum of Mean Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_mean'].sum())
|
| 217 |
-
markdown_text += "- **Skew Distribution:** {} Upside, {} Downside, {} Neutral\n
|
|
|
|
| 218 |
|
| 219 |
-
forecast_table = "### TiRex Forecast Results (Median + {}% Interval)\n\n".format(confidence)
|
| 220 |
-
forecast_table += "| Date | Median | Lower Bound | Upper Bound | Mean | Skew |\n"
|
| 221 |
-
forecast_table += "
|
| 222 |
for idx, row in pred_df.iterrows():
|
| 223 |
-
forecast_table += "| {} | {:.2f} | {:.2f} | {:.2f} | {:.2f} | {} |\n".format(
|
| 224 |
idx.strftime('%Y-%m-%d'),
|
| 225 |
row['predicted_sales_median'],
|
| 226 |
row['predicted_sales_lower'],
|
| 227 |
row['predicted_sales_upper'],
|
| 228 |
row['predicted_sales_mean'],
|
| 229 |
-
row['skew_direction']
|
|
|
|
|
|
|
| 230 |
)
|
| 231 |
|
| 232 |
sample_data = "### Sample Historical Data (Context)\n"
|
|
@@ -235,9 +257,12 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
|
|
| 235 |
markdown_text += f'\n<details><summary>Click to expand Forecast Table</summary>\n\n{forecast_table}\n</details>\n\n'
|
| 236 |
markdown_text += f'<details><summary>Click to expand Sample Historical Data</summary>\n\n{sample_data}\n</details>'
|
| 237 |
|
| 238 |
-
# Create plot
|
| 239 |
fig, ax = plt.subplots(figsize=(14, 7))
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
| 241 |
if not held_out_df.empty:
|
| 242 |
ax.plot(held_out_df.index, held_out_df['sales'], label='Held Out Actual (Validation)', color='#2ca02c', linestyle=':', linewidth=2)
|
| 243 |
|
|
@@ -254,47 +279,46 @@ def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_le
|
|
| 254 |
ma = context_df['sales'].rolling(window=window, min_periods=1).mean()
|
| 255 |
ax.plot(context_df.index, ma, label=f'Moving Average ({window} periods)', color='purple', linewidth=2)
|
| 256 |
|
| 257 |
-
|
|
|
|
| 258 |
|
| 259 |
# Fan chart: non-overlapping bands
|
| 260 |
# Inner 50% (lightest, center)
|
| 261 |
ax.fill_between(pred_df.index, lower50, upper50,
|
| 262 |
-
|
| 263 |
# Wings: between 50% and slider level (medium)
|
| 264 |
ax.fill_between(pred_df.index, lower_slider, lower50,
|
| 265 |
-
|
| 266 |
ax.fill_between(pred_df.index, upper50, upper_slider,
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
#
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
# Connect the last point if needed, but since segments cover, add a small marker at end if desired
|
| 284 |
-
ax.plot(pred_df.index[-1], median[-1], marker='o', color=skew_colors[skew_directions[-1]], markersize=4, alpha=0.7)
|
| 285 |
-
|
| 286 |
-
# Add to legend only if present
|
| 287 |
-
if upside_count > 0:
|
| 288 |
-
legend_elements.append(Line2D([0], [0], color='green', lw=2, label='Upside Skew'))
|
| 289 |
-
if downside_count > 0:
|
| 290 |
-
legend_elements.append(Line2D([0], [0], color='red', lw=2, label='Downside Skew'))
|
| 291 |
-
if neutral_count > 0:
|
| 292 |
-
legend_elements.append(Line2D([0], [0], color='gray', lw=2, label='Neutral Skew'))
|
| 293 |
|
| 294 |
ax.set_title(f'{selected_col} Forecast with TiRex (Context: {context_start+1}-{context_end}, Horizon: {pred_len})', fontsize=16, fontweight='bold')
|
| 295 |
ax.set_xlabel('Date', fontsize=12)
|
| 296 |
ax.set_ylabel(selected_col, fontsize=12)
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
ax.tick_params(axis='x', rotation=45)
|
| 299 |
plt.tight_layout()
|
| 300 |
|
|
@@ -318,7 +342,7 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="red"), ti
|
|
| 318 |
}
|
| 319 |
</style>
|
| 320 |
""")
|
| 321 |
-
|
| 322 |
gr.Markdown("""
|
| 323 |
# TiRex Forecaster Dashboard
|
| 324 |
Upload a CSV file with a time column and numeric columns. Select the time column and one numeric column to forecast future values using the TiRex model.
|
|
@@ -361,7 +385,7 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="red"), ti
|
|
| 361 |
)
|
| 362 |
confidence = gr.Slider(
|
| 363 |
minimum=50, maximum=95, value=80, step=5,
|
| 364 |
-
label="
|
| 365 |
elem_id="confidence"
|
| 366 |
)
|
| 367 |
trend_checkbox = gr.Checkbox(
|
|
@@ -378,6 +402,10 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="red"), ti
|
|
| 378 |
elem_id="ma_window",
|
| 379 |
visible=False
|
| 380 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
run_button = gr.Button(
|
| 382 |
"Run forecast",
|
| 383 |
variant="primary",
|
|
@@ -414,9 +442,9 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="red"), ti
|
|
| 414 |
# Event for running forecast
|
| 415 |
run_button.click(
|
| 416 |
run_forecast,
|
| 417 |
-
inputs=[csv_file, time_dropdown, column_dropdown, start_slider, end_slider, prediction_length, confidence, trend_checkbox, ma_checkbox, ma_slider],
|
| 418 |
outputs=[forecast_plot, output_text]
|
| 419 |
)
|
| 420 |
|
| 421 |
-
|
| 422 |
-
demo.launch()
|
|
|
|
| 90 |
def update_ma_visibility(add_ma):
|
| 91 |
return gr.Slider(visible=add_ma)
|
| 92 |
|
| 93 |
+
def run_forecast(file, time_col, selected_col, start_idx, end_idx, prediction_length, confidence, add_trendline, add_moving_average, ma_window, add_skew_viz):
|
| 94 |
if file is None or time_col is None or selected_col is None:
|
| 95 |
return None, "### Error\nPlease upload a CSV and select time and value columns!"
|
| 96 |
|
|
|
|
| 162 |
lower_slider = np.zeros(pred_len)
|
| 163 |
upper_slider = np.zeros(pred_len)
|
| 164 |
|
| 165 |
+
skew_ratios = np.zeros(pred_len)
|
| 166 |
+
delta_skews = np.zeros(pred_len)
|
| 167 |
skew_directions = []
|
| 168 |
|
| 169 |
+
epsilon = 1e-8
|
| 170 |
for t in range(pred_len):
|
| 171 |
q_t = q[t]
|
| 172 |
lower50[t] = np.interp(lower_alpha_50, alphas, q_t)
|
|
|
|
| 178 |
med = median[t]
|
| 179 |
upside_dist = upper_slider[t] - med
|
| 180 |
downside_dist = med - lower_slider[t]
|
| 181 |
+
total_dist = upside_dist + downside_dist + epsilon
|
| 182 |
+
skew_ratios[t] = (upside_dist - downside_dist) / total_dist
|
| 183 |
+
|
| 184 |
+
# Delta for momentum (shift from previous step)
|
| 185 |
+
if t == 0:
|
| 186 |
+
delta_skews[t] = 0.0
|
| 187 |
+
else:
|
| 188 |
+
delta_skews[t] = skew_ratios[t] - skew_ratios[t-1]
|
| 189 |
+
|
| 190 |
+
# Existing categorical (optional: derive from skew_ratio for compat)
|
| 191 |
+
if skew_ratios[t] > 0.1:
|
| 192 |
skew_directions.append("Upside")
|
| 193 |
+
elif skew_ratios[t] < -0.1:
|
| 194 |
skew_directions.append("Downside")
|
| 195 |
else:
|
| 196 |
skew_directions.append("Neutral")
|
|
|
|
| 211 |
'predicted_sales_lower': lower_slider,
|
| 212 |
'predicted_sales_upper': upper_slider,
|
| 213 |
'predicted_sales_mean': mean_forecast,
|
| 214 |
+
'skew_direction': skew_directions,
|
| 215 |
+
'skew_ratio': skew_ratios,
|
| 216 |
+
'delta_skew': delta_skews
|
| 217 |
}).set_index('date')
|
| 218 |
|
| 219 |
# Count skews for summary
|
| 220 |
+
upside_count = sum(1 for r in skew_ratios if r > 0.1)
|
| 221 |
+
downside_count = sum(1 for r in skew_ratios if r < -0.1)
|
| 222 |
+
neutral_count = pred_len - upside_count - downside_count
|
| 223 |
+
|
| 224 |
+
# NEW: Summary stats for skew momentum
|
| 225 |
+
avg_skew = skew_ratios.mean()
|
| 226 |
+
max_momentum_shift = abs(delta_skews).max()
|
| 227 |
|
| 228 |
# Prepare markdown output (broken into smaller strings to avoid multiline f-string parsing issues)
|
| 229 |
markdown_text = "### Summary\n"
|
| 230 |
markdown_text += "- **Number of Historical Periods Used:** {} points\n".format(len(context_series))
|
| 231 |
markdown_text += "- **Held Out Periods:** {} points {}\n".format(len(held_out_df), "(Full Context Used)" if len(held_out_df) == 0 else "(For Validation)")
|
| 232 |
markdown_text += "- **Prediction Length:** {} periods\n".format(pred_len)
|
| 233 |
+
markdown_text += "- **Prediction Interval:** {}% (alphas: {:.3f} - {:.3f})\n".format(confidence, lower_alpha_slider, upper_alpha_slider)
|
| 234 |
markdown_text += "- **Sum of Median Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_median'].sum())
|
| 235 |
markdown_text += "- **Sum of Mean Predicted Values:** {:.2f}\n".format(pred_df['predicted_sales_mean'].sum())
|
| 236 |
+
markdown_text += "- **Skew Distribution:** {} Upside, {} Downside, {} Neutral\n".format(upside_count, downside_count, neutral_count)
|
| 237 |
+
markdown_text += "- **Average Skew Ratio:** {:.3f} (momentum: max |Ξ| = {:.3f})\n\n".format(avg_skew, max_momentum_shift)
|
| 238 |
|
| 239 |
+
forecast_table = "### TiRex Forecast Results (Median + {}% Prediction Interval)\n\n".format(confidence)
|
| 240 |
+
forecast_table += "| Date | Median | Lower Bound | Upper Bound | Mean | Skew Direction | Skew Ratio | Ξ Skew |\n"
|
| 241 |
+
forecast_table += "|------|--------|-------------|-------------|------|----------------|------------|--------|\n"
|
| 242 |
for idx, row in pred_df.iterrows():
|
| 243 |
+
forecast_table += "| {} | {:.2f} | {:.2f} | {:.2f} | {:.2f} | {} | {:.3f} | {:.3f} |\n".format(
|
| 244 |
idx.strftime('%Y-%m-%d'),
|
| 245 |
row['predicted_sales_median'],
|
| 246 |
row['predicted_sales_lower'],
|
| 247 |
row['predicted_sales_upper'],
|
| 248 |
row['predicted_sales_mean'],
|
| 249 |
+
row['skew_direction'],
|
| 250 |
+
row['skew_ratio'],
|
| 251 |
+
row['delta_skew']
|
| 252 |
)
|
| 253 |
|
| 254 |
sample_data = "### Sample Historical Data (Context)\n"
|
|
|
|
| 257 |
markdown_text += f'\n<details><summary>Click to expand Forecast Table</summary>\n\n{forecast_table}\n</details>\n\n'
|
| 258 |
markdown_text += f'<details><summary>Click to expand Sample Historical Data</summary>\n\n{sample_data}\n</details>'
|
| 259 |
|
| 260 |
+
# Create plot (single subplot)
|
| 261 |
fig, ax = plt.subplots(figsize=(14, 7))
|
| 262 |
+
fig.set_dpi(300) # High resolution for PNG zoom
|
| 263 |
+
|
| 264 |
+
# Historical and held-out
|
| 265 |
+
ax.plot(context_df.index, context_df['sales'], label='Historical Data', color='#1f77b4', linewidth=1.5, alpha=0.8)
|
| 266 |
if not held_out_df.empty:
|
| 267 |
ax.plot(held_out_df.index, held_out_df['sales'], label='Held Out Actual (Validation)', color='#2ca02c', linestyle=':', linewidth=2)
|
| 268 |
|
|
|
|
| 279 |
ma = context_df['sales'].rolling(window=window, min_periods=1).mean()
|
| 280 |
ax.plot(context_df.index, ma, label=f'Moving Average ({window} periods)', color='purple', linewidth=2)
|
| 281 |
|
| 282 |
+
# Median forecast: regular green line
|
| 283 |
+
ax.plot(pred_df.index, median, label='Median Forecast', color='green', linewidth=2, alpha=0.9)
|
| 284 |
|
| 285 |
# Fan chart: non-overlapping bands
|
| 286 |
# Inner 50% (lightest, center)
|
| 287 |
ax.fill_between(pred_df.index, lower50, upper50,
|
| 288 |
+
color='#d62728', alpha=0.1, label='50% Prediction Interval')
|
| 289 |
# Wings: between 50% and slider level (medium)
|
| 290 |
ax.fill_between(pred_df.index, lower_slider, lower50,
|
| 291 |
+
color='#d62728', alpha=0.3)
|
| 292 |
ax.fill_between(pred_df.index, upper50, upper_slider,
|
| 293 |
+
color='#d62728', alpha=0.3, label=f'{confidence}% Prediction Interval')
|
| 294 |
+
|
| 295 |
+
# Optional skew visualization on twin axis (light lines)
|
| 296 |
+
skew_handles = []
|
| 297 |
+
if add_skew_viz:
|
| 298 |
+
ax2 = ax.twinx()
|
| 299 |
+
# Light line for skew_ratio
|
| 300 |
+
line1, = ax2.plot(pred_df.index, skew_ratios, label='Skew Ratio', color='lightblue', linewidth=1, alpha=0.6)
|
| 301 |
+
skew_handles.append(line1)
|
| 302 |
+
# Light line for delta_skew (momentum) - milder color
|
| 303 |
+
line2, = ax2.plot(pred_df.index, delta_skews, label='Skew Momentum', color='lightgray', linewidth=1, alpha=0.6)
|
| 304 |
+
skew_handles.append(line2)
|
| 305 |
+
ax2.set_ylabel('Skew (-1 to 1)', color='lightblue')
|
| 306 |
+
ax2.tick_params(colors='lightblue')
|
| 307 |
+
# Set limits for visibility
|
| 308 |
+
ax2.set_ylim(-1.2, 1.2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
ax.set_title(f'{selected_col} Forecast with TiRex (Context: {context_start+1}-{context_end}, Horizon: {pred_len})', fontsize=16, fontweight='bold')
|
| 311 |
ax.set_xlabel('Date', fontsize=12)
|
| 312 |
ax.set_ylabel(selected_col, fontsize=12)
|
| 313 |
+
|
| 314 |
+
# Combined legend to avoid overlap
|
| 315 |
+
if add_skew_viz:
|
| 316 |
+
handles1, labels1 = ax.get_legend_handles_labels()
|
| 317 |
+
handles2, labels2 = ax2.get_legend_handles_labels()
|
| 318 |
+
ax.legend(handles1 + handles2, labels1 + labels2, fontsize=10, loc='upper left')
|
| 319 |
+
else:
|
| 320 |
+
ax.legend(fontsize=10)
|
| 321 |
+
|
| 322 |
ax.tick_params(axis='x', rotation=45)
|
| 323 |
plt.tight_layout()
|
| 324 |
|
|
|
|
| 342 |
}
|
| 343 |
</style>
|
| 344 |
""")
|
| 345 |
+
|
| 346 |
gr.Markdown("""
|
| 347 |
# TiRex Forecaster Dashboard
|
| 348 |
Upload a CSV file with a time column and numeric columns. Select the time column and one numeric column to forecast future values using the TiRex model.
|
|
|
|
| 385 |
)
|
| 386 |
confidence = gr.Slider(
|
| 387 |
minimum=50, maximum=95, value=80, step=5,
|
| 388 |
+
label="Prediction Interval (%)",
|
| 389 |
elem_id="confidence"
|
| 390 |
)
|
| 391 |
trend_checkbox = gr.Checkbox(
|
|
|
|
| 402 |
elem_id="ma_window",
|
| 403 |
visible=False
|
| 404 |
)
|
| 405 |
+
skew_checkbox = gr.Checkbox(
|
| 406 |
+
label="Add Skew Ratio & Momentum",
|
| 407 |
+
value=False
|
| 408 |
+
)
|
| 409 |
run_button = gr.Button(
|
| 410 |
"Run forecast",
|
| 411 |
variant="primary",
|
|
|
|
| 442 |
# Event for running forecast
|
| 443 |
run_button.click(
|
| 444 |
run_forecast,
|
| 445 |
+
inputs=[csv_file, time_dropdown, column_dropdown, start_slider, end_slider, prediction_length, confidence, trend_checkbox, ma_checkbox, ma_slider, skew_checkbox],
|
| 446 |
outputs=[forecast_plot, output_text]
|
| 447 |
)
|
| 448 |
|
| 449 |
+
if __name__ == "__main__":
|
| 450 |
+
demo.launch()
|