Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| import torch | |
| import torchaudio | |
| from transformers.models.dac import DacModel | |
| class DACAutoencoder: | |
| def __init__(self): | |
| super().__init__() | |
| self.dac = DacModel.from_pretrained("descript/dac_44khz") | |
| self.dac.eval().requires_grad_(False) | |
| self.codebook_size = self.dac.config.codebook_size | |
| self.num_codebooks = self.dac.quantizer.n_codebooks | |
| self.sampling_rate = self.dac.config.sampling_rate | |
| def preprocess(self, wav: torch.Tensor, sr: int) -> torch.Tensor: | |
| wav = torchaudio.functional.resample(wav, sr, 44_100) | |
| right_pad = math.ceil(wav.shape[-1] / 512) * 512 - wav.shape[-1] | |
| return torch.nn.functional.pad(wav, (0, right_pad)) | |
| def encode(self, wav: torch.Tensor) -> torch.Tensor: | |
| return self.dac.encode(wav).audio_codes | |
| def decode(self, codes: torch.Tensor) -> torch.Tensor: | |
| return self.dac.decode(audio_codes=codes).audio_values.unsqueeze(1) | |