Spaces:
Running
Running
| import os | |
| import sys | |
| import numpy as np | |
| import pyworld | |
| import torchcrepe | |
| import torch | |
| import parselmouth | |
| import tqdm | |
| from multiprocessing import Process, cpu_count | |
| current_directory = os.getcwd() | |
| sys.path.append(current_directory) | |
| from rvc.lib.utils import load_audio | |
| exp_dir = sys.argv[1] | |
| f0_method = sys.argv[2] | |
| num_processes = cpu_count() | |
| try: | |
| hop_length = int(sys.argv[3]) | |
| except ValueError: | |
| hop_length = 128 | |
| DoFormant = False | |
| Quefrency = 1.0 | |
| Timbre = 1.0 | |
| class FeatureInput: | |
| def __init__(self, sample_rate=16000, hop_size=160): | |
| self.fs = sample_rate | |
| self.hop = hop_size | |
| self.f0_method_dict = self.get_f0_method_dict() | |
| self.f0_bin = 256 | |
| self.f0_max = 1100.0 | |
| self.f0_min = 50.0 | |
| self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
| self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
| def mncrepe(self, method, x, p_len, hop_length): | |
| f0 = None | |
| torch_device_index = 0 | |
| torch_device = ( | |
| torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}") | |
| if torch.cuda.is_available() | |
| else torch.device("mps") | |
| if torch.backends.mps.is_available() | |
| else torch.device("cpu") | |
| ) | |
| audio = torch.from_numpy(x.astype(np.float32)).to(torch_device, copy=True) | |
| audio /= torch.quantile(torch.abs(audio), 0.999) | |
| audio = torch.unsqueeze(audio, dim=0) | |
| if audio.ndim == 2 and audio.shape[0] > 1: | |
| audio = torch.mean(audio, dim=0, keepdim=True).detach() | |
| audio = audio.detach() | |
| if method == "crepe": | |
| pitch = torchcrepe.predict( | |
| audio, | |
| self.fs, | |
| hop_length, | |
| self.f0_min, | |
| self.f0_max, | |
| "full", | |
| batch_size=hop_length * 2, | |
| device=torch_device, | |
| pad=True, | |
| ) | |
| p_len = p_len or x.shape[0] // hop_length | |
| source = np.array(pitch.squeeze(0).cpu().float().numpy()) | |
| source[source < 0.001] = np.nan | |
| target = np.interp( | |
| np.arange(0, len(source) * p_len, len(source)) / p_len, | |
| np.arange(0, len(source)), | |
| source, | |
| ) | |
| f0 = np.nan_to_num(target) | |
| return f0 | |
| def get_pm(self, x, p_len): | |
| f0 = ( | |
| parselmouth.Sound(x, self.fs) | |
| .to_pitch_ac( | |
| time_step=160 / 16000, | |
| voicing_threshold=0.6, | |
| pitch_floor=self.f0_min, | |
| pitch_ceiling=self.f0_max, | |
| ) | |
| .selected_array["frequency"] | |
| ) | |
| return np.pad( | |
| f0, | |
| [ | |
| [ | |
| max(0, (p_len - len(f0) + 1) // 2), | |
| max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2), | |
| ] | |
| ], | |
| mode="constant", | |
| ) | |
| def get_harvest(self, x): | |
| f0_spectral = pyworld.harvest( | |
| x.astype(np.double), | |
| fs=self.fs, | |
| f0_ceil=self.f0_max, | |
| f0_floor=self.f0_min, | |
| frame_period=1000 * self.hop / self.fs, | |
| ) | |
| return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs) | |
| def get_dio(self, x): | |
| f0_spectral = pyworld.dio( | |
| x.astype(np.double), | |
| fs=self.fs, | |
| f0_ceil=self.f0_max, | |
| f0_floor=self.f0_min, | |
| frame_period=1000 * self.hop / self.fs, | |
| ) | |
| return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs) | |
| def get_rmvpe(self, x): | |
| if not hasattr(self, "model_rmvpe"): | |
| from rvc.lib.rmvpe import RMVPE | |
| self.model_rmvpe = RMVPE("rmvpe.pt", is_half=False, device="cpu") | |
| return self.model_rmvpe.infer_from_audio(x, thred=0.03) | |
| def get_f0_method_dict(self): | |
| return { | |
| "pm": self.get_pm, | |
| "harvest": self.get_harvest, | |
| "dio": self.get_dio, | |
| "rmvpe": self.get_rmvpe, | |
| } | |
| def compute_f0(self, path, f0_method, hop_length): | |
| x = load_audio(path, self.fs) | |
| p_len = x.shape[0] // self.hop | |
| if f0_method in self.f0_method_dict: | |
| f0 = ( | |
| self.f0_method_dict[f0_method](x, p_len) | |
| if f0_method == "pm" | |
| else self.f0_method_dict[f0_method](x) | |
| ) | |
| elif f0_method == "crepe": | |
| f0 = self.mncrepe(f0_method, x, p_len, hop_length) | |
| return f0 | |
| def coarse_f0(self, f0): | |
| f0_mel = 1127 * np.log(1 + f0 / 700) | |
| f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * ( | |
| self.f0_bin - 2 | |
| ) / (self.f0_mel_max - self.f0_mel_min) + 1 | |
| # use 0 or 1 | |
| f0_mel[f0_mel <= 1] = 1 | |
| f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1 | |
| f0_coarse = np.rint(f0_mel).astype(int) | |
| assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( | |
| f0_coarse.max(), | |
| f0_coarse.min(), | |
| ) | |
| return f0_coarse | |
| def process_paths(self, paths, f0_method, hop_length, thread_n): | |
| if len(paths) == 0: | |
| print("There are no paths to process.") | |
| return | |
| with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar: | |
| description = f"Thread {thread_n} | Hop-Length {hop_length}" | |
| pbar.set_description(description) | |
| for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths): | |
| try: | |
| if os.path.exists(opt_path1 + ".npy") and os.path.exists( | |
| opt_path2 + ".npy" | |
| ): | |
| pbar.update(1) | |
| continue | |
| feature_pit = self.compute_f0(inp_path, f0_method, hop_length) | |
| np.save( | |
| opt_path2, | |
| feature_pit, | |
| allow_pickle=False, | |
| ) # nsf | |
| coarse_pit = self.coarse_f0(feature_pit) | |
| np.save( | |
| opt_path1, | |
| coarse_pit, | |
| allow_pickle=False, | |
| ) # ori | |
| pbar.update(1) | |
| except Exception as error: | |
| print(f"f0fail-{idx}-{inp_path}-{error}") | |
| if __name__ == "__main__": | |
| feature_input = FeatureInput() | |
| paths = [] | |
| input_root = f"{exp_dir}/1_16k_wavs" | |
| output_root1 = f"{exp_dir}/2a_f0" | |
| output_root2 = f"{exp_dir}/2b-f0nsf" | |
| os.makedirs(output_root1, exist_ok=True) | |
| os.makedirs(output_root2, exist_ok=True) | |
| for name in sorted(list(os.listdir(input_root))): | |
| input_path = f"{input_root}/{name}" | |
| if "spec" in input_path: | |
| continue | |
| output_path1 = f"{output_root1}/{name}" | |
| output_path2 = f"{output_root2}/{name}" | |
| paths.append([input_path, output_path1, output_path2]) | |
| processes = [] | |
| print("Using f0 method: " + f0_method) | |
| for i in range(num_processes): | |
| p = Process( | |
| target=feature_input.process_paths, | |
| args=(paths[i::num_processes], f0_method, hop_length, i), | |
| ) | |
| processes.append(p) | |
| p.start() | |
| for i in range(num_processes): | |
| processes[i].join() | |