shyuli
commited on
Commit
Β·
542377d
1
Parent(s):
c3f10b2
version v0.1
Browse files- app.py +37 -0
- src/about.py +3 -3
app.py
CHANGED
|
@@ -125,13 +125,42 @@ except Exception as e:
|
|
| 125 |
print(f"Could not setup eval results path: {e}")
|
| 126 |
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
|
| 129 |
|
| 130 |
(
|
| 131 |
finished_eval_queue_df,
|
| 132 |
running_eval_queue_df,
|
| 133 |
pending_eval_queue_df,
|
| 134 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
|
| 137 |
def init_leaderboard(dataframe):
|
|
@@ -161,19 +190,26 @@ def create_demo():
|
|
| 161 |
gr.HTML(TITLE)
|
| 162 |
|
| 163 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
|
|
|
| 164 |
with gr.TabItem("π
SearchAgent Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 165 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 166 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
|
| 167 |
|
|
|
|
| 168 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
| 169 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
| 170 |
|
|
|
|
| 171 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 172 |
with gr.Column():
|
| 173 |
with gr.Row():
|
| 174 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
|
| 175 |
|
| 176 |
with gr.Row():
|
|
|
|
| 177 |
with gr.Accordion("π Citation", open=False):
|
| 178 |
gr.Textbox(
|
| 179 |
value=CITATION_BUTTON_TEXT,
|
|
@@ -182,6 +218,7 @@ def create_demo():
|
|
| 182 |
elem_id="citation-button",
|
| 183 |
show_copy_button=True,
|
| 184 |
)
|
|
|
|
| 185 |
|
| 186 |
return demo
|
| 187 |
|
|
|
|
| 125 |
print(f"Could not setup eval results path: {e}")
|
| 126 |
|
| 127 |
|
| 128 |
+
def _debug_print_dataframe(name: str, dataframe: pd.DataFrame) -> None:
|
| 129 |
+
if dataframe is None:
|
| 130 |
+
print(f"[debug] {name}: DataFrame is None")
|
| 131 |
+
return
|
| 132 |
+
print(f"[debug] {name}: shape={dataframe.shape}, columns={list(dataframe.columns)}")
|
| 133 |
+
if not dataframe.empty:
|
| 134 |
+
preview = dataframe.head().to_dict(orient="records")
|
| 135 |
+
print(f"[debug] {name}: head={preview}")
|
| 136 |
+
else:
|
| 137 |
+
print(f"[debug] {name}: DataFrame is empty")
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def _debug_list_dir(label: str, path: str, limit: int = 10) -> None:
|
| 141 |
+
try:
|
| 142 |
+
entries = os.listdir(path)
|
| 143 |
+
print(f"[debug] {label}: path={path}, count={len(entries)}, preview={entries[:limit]}")
|
| 144 |
+
except FileNotFoundError:
|
| 145 |
+
print(f"[debug] {label}: path={path} not found")
|
| 146 |
+
except Exception as exc:
|
| 147 |
+
print(f"[debug] {label}: path={path} error={exc}")
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
_debug_list_dir("EVAL_RESULTS", EVAL_RESULTS_PATH)
|
| 151 |
+
_debug_list_dir("EVAL_QUEUE", EVAL_REQUESTS_PATH)
|
| 152 |
+
|
| 153 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 154 |
+
_debug_print_dataframe("LEADERBOARD", LEADERBOARD_DF)
|
| 155 |
|
| 156 |
(
|
| 157 |
finished_eval_queue_df,
|
| 158 |
running_eval_queue_df,
|
| 159 |
pending_eval_queue_df,
|
| 160 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 161 |
+
_debug_print_dataframe("EVAL_QUEUE_FINISHED", finished_eval_queue_df)
|
| 162 |
+
_debug_print_dataframe("EVAL_QUEUE_RUNNING", running_eval_queue_df)
|
| 163 |
+
_debug_print_dataframe("EVAL_QUEUE_PENDING", pending_eval_queue_df)
|
| 164 |
|
| 165 |
|
| 166 |
def init_leaderboard(dataframe):
|
|
|
|
| 190 |
gr.HTML(TITLE)
|
| 191 |
|
| 192 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 193 |
+
print("[debug] Rendering leaderboard tab start")
|
| 194 |
with gr.TabItem("π
SearchAgent Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 195 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 196 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 197 |
+
print("[debug] Rendering leaderboard tab done")
|
| 198 |
|
| 199 |
+
print("[debug] Rendering about tab start")
|
| 200 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
| 201 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 202 |
+
print("[debug] Rendering about tab done")
|
| 203 |
|
| 204 |
+
print("[debug] Rendering submit tab start")
|
| 205 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 206 |
with gr.Column():
|
| 207 |
with gr.Row():
|
| 208 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 209 |
+
print("[debug] Rendering submit tab done")
|
| 210 |
|
| 211 |
with gr.Row():
|
| 212 |
+
print("[debug] Rendering citation start")
|
| 213 |
with gr.Accordion("π Citation", open=False):
|
| 214 |
gr.Textbox(
|
| 215 |
value=CITATION_BUTTON_TEXT,
|
|
|
|
| 218 |
elem_id="citation-button",
|
| 219 |
show_copy_button=True,
|
| 220 |
)
|
| 221 |
+
print("[debug] Rendering citation done")
|
| 222 |
|
| 223 |
return demo
|
| 224 |
|
src/about.py
CHANGED
|
@@ -42,12 +42,12 @@ This leaderboard evaluates the performance of **search-augmented question answer
|
|
| 42 |
|
| 43 |
We evaluate on a comprehensive set of benchmarks that test different aspects of search-augmented QA:
|
| 44 |
|
| 45 |
-
### General QA
|
| 46 |
- **NQ**: Natural Questions - QA based on real Google search queries from Wikipedia
|
| 47 |
- **TriviaQA**: Trivia questions requiring document-based answer extraction
|
| 48 |
- **PopQA**: Popular culture QA testing knowledge breadth and parametric vs. non-parametric memory
|
| 49 |
|
| 50 |
-
### Multi-Hop QA
|
| 51 |
- **HotpotQA**: Complex QA requiring reasoning across multiple documents with explainable reasoning chains
|
| 52 |
- **2wiki**: Multi-hop reasoning based on Wikipedia requiring compositional reasoning
|
| 53 |
- **Musique**: Multi-step compositional reasoning QA via single-hop question composition
|
|
@@ -68,7 +68,7 @@ LLM_BENCHMARKS_TEXT = f"""
|
|
| 68 |
This leaderboard addresses the challenge of inconsistent experimental settings in search agent evaluation by providing standardized comparisons. Prior works vary significantly in:
|
| 69 |
|
| 70 |
1. **Corpora**: From static Wikipedia snapshots (2018, 2019) to live Internet access
|
| 71 |
-
2. **Test Sets**: Broad evaluation
|
| 72 |
3. **Training Regimes**: No training to multi-dataset fine-tuning approaches
|
| 73 |
4. **Metrics**: Exact Match, F1, Substring matching, and LLM-as-a-judge evaluations
|
| 74 |
|
|
|
|
| 42 |
|
| 43 |
We evaluate on a comprehensive set of benchmarks that test different aspects of search-augmented QA:
|
| 44 |
|
| 45 |
+
### General QA
|
| 46 |
- **NQ**: Natural Questions - QA based on real Google search queries from Wikipedia
|
| 47 |
- **TriviaQA**: Trivia questions requiring document-based answer extraction
|
| 48 |
- **PopQA**: Popular culture QA testing knowledge breadth and parametric vs. non-parametric memory
|
| 49 |
|
| 50 |
+
### Multi-Hop QA
|
| 51 |
- **HotpotQA**: Complex QA requiring reasoning across multiple documents with explainable reasoning chains
|
| 52 |
- **2wiki**: Multi-hop reasoning based on Wikipedia requiring compositional reasoning
|
| 53 |
- **Musique**: Multi-step compositional reasoning QA via single-hop question composition
|
|
|
|
| 68 |
This leaderboard addresses the challenge of inconsistent experimental settings in search agent evaluation by providing standardized comparisons. Prior works vary significantly in:
|
| 69 |
|
| 70 |
1. **Corpora**: From static Wikipedia snapshots (2018, 2019) to live Internet access
|
| 71 |
+
2. **Test Sets**: Broad evaluation vs. focused multi-hop evaluation
|
| 72 |
3. **Training Regimes**: No training to multi-dataset fine-tuning approaches
|
| 73 |
4. **Metrics**: Exact Match, F1, Substring matching, and LLM-as-a-judge evaluations
|
| 74 |
|