Commit
·
c11ccae
1
Parent(s):
8b691a8
format
Browse files
app.py
CHANGED
|
@@ -19,11 +19,9 @@ sample_text = [
|
|
| 19 |
"Summer Travelling in Iceland; being the narrative of two journeys across the island ... With a chapter on Askja by E. Delmar Morgan ... Containing also a literal translation of three sagas. Maps, etc'"
|
| 20 |
],
|
| 21 |
[
|
| 22 |
-
|
| 23 |
-
],
|
| 24 |
-
[
|
| 25 |
-
"The history and antiquities of Newbury and its environs [By E. W. Gray.]"
|
| 26 |
],
|
|
|
|
| 27 |
["""A Christmas Carol"""],
|
| 28 |
]
|
| 29 |
|
|
@@ -67,19 +65,25 @@ The model is trained on a particular collection of books digitised by the Britis
|
|
| 67 |
|
| 68 |
tokenizer = AutoTokenizer.from_pretrained("TheBritishLibrary/bl-books-genre")
|
| 69 |
|
| 70 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
def predict(text):
|
| 75 |
predictions = classifier(text)
|
| 76 |
-
return {pred[
|
| 77 |
-
|
| 78 |
|
| 79 |
|
| 80 |
-
gr.Interface(
|
|
|
|
| 81 |
inputs=gr.Textbox(label="Book title"),
|
| 82 |
-
outputs=
|
| 83 |
-
interpretation=
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"Summer Travelling in Iceland; being the narrative of two journeys across the island ... With a chapter on Askja by E. Delmar Morgan ... Containing also a literal translation of three sagas. Maps, etc'"
|
| 20 |
],
|
| 21 |
[
|
| 22 |
+
"History of the Monument. With a brief account of the Great Fire of London, which it commemorates. By Charles Welch. (With illustrations and a map of Old London.)",
|
|
|
|
|
|
|
|
|
|
| 23 |
],
|
| 24 |
+
["The history and antiquities of Newbury and its environs [By E. W. Gray.]"],
|
| 25 |
["""A Christmas Carol"""],
|
| 26 |
]
|
| 27 |
|
|
|
|
| 65 |
|
| 66 |
tokenizer = AutoTokenizer.from_pretrained("TheBritishLibrary/bl-books-genre")
|
| 67 |
|
| 68 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 69 |
+
"TheBritishLibrary/bl-books-genre"
|
| 70 |
+
)
|
| 71 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=10)
|
| 72 |
|
| 73 |
|
| 74 |
def predict(text):
|
| 75 |
predictions = classifier(text)
|
| 76 |
+
return {pred["label"]: float(pred["score"]) for pred in predictions}
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
+
gr.Interface(
|
| 80 |
+
predict,
|
| 81 |
inputs=gr.Textbox(label="Book title"),
|
| 82 |
+
outputs="label",
|
| 83 |
+
interpretation="shap",
|
| 84 |
+
num_shap=10.0,
|
| 85 |
+
theme="huggingface",
|
| 86 |
+
examples=sample_text,
|
| 87 |
+
description=description,
|
| 88 |
+
article=article,
|
| 89 |
+
).launch(enable_queue=True)
|