Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModel, AutoProcessor | |
| import torch | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| fashion_items = ['top', 'trousers', 'jumper'] | |
| # Load model and processor | |
| model_name = 'Marqo/marqo-fashionSigLIP' | |
| model = AutoModel.from_pretrained(model_name, trust_remote_code=True) | |
| processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) | |
| # Preprocess and normalize text data | |
| with torch.no_grad(): | |
| # Ensure truncation and padding are activated | |
| processed_texts = processor( | |
| text=fashion_items, | |
| return_tensors="pt", | |
| truncation=True, # Ensure text is truncated to fit model input size | |
| padding=True # Pad shorter sequences so that all are the same length | |
| )['input_ids'] | |
| text_features = model.get_text_features(processed_texts) | |
| text_features = text_features / text_features.norm(dim=-1, keepdim=True) | |
| # Prediction function | |
| def predict_from_url(url): | |
| # Check if the URL is empty | |
| if not url: | |
| return {"Error": "Please input a URL"} | |
| try: | |
| image = Image.open(BytesIO(requests.get(url).content)) | |
| except Exception as e: | |
| return {"Error": f"Failed to load image: {str(e)}"} | |
| processed_image = processor(images=image, return_tensors="pt")['pixel_values'] | |
| with torch.no_grad(): | |
| image_features = model.get_image_features(processed_image) | |
| image_features = image_features / image_features.norm(dim=-1, keepdim=True) | |
| text_probs = (100 * image_features @ text_features.T).softmax(dim=-1) | |
| return {fashion_items[i]: float(text_probs[0, i]) for i in range(len(fashion_items))} | |
| # Gradio interface | |
| demo = gr.Interface( | |
| fn=predict_from_url, | |
| inputs=gr.Textbox(label="Enter Image URL"), | |
| outputs=gr.Label(label="Classification Results"), | |
| title="Fashion Item Classifier", | |
| allow_flagging="never" | |
| ) | |
| # Launch the interface | |
| demo.launch() | |