Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 3 |
import os
|
| 4 |
from huggingface_hub import login
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
| 8 |
login(token=HUGGINGFACE_TOKEN)
|
| 9 |
|
| 10 |
-
# Load Phi-4 Mini
|
| 11 |
phi_model_id = "microsoft/phi-4-mini-instruct"
|
| 12 |
phi_tokenizer = AutoTokenizer.from_pretrained(phi_model_id, token=HUGGINGFACE_TOKEN)
|
| 13 |
phi_model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -16,9 +17,14 @@ phi_model = AutoModelForCausalLM.from_pretrained(
|
|
| 16 |
phi_pipe = pipeline("text-generation", model=phi_model, tokenizer=phi_tokenizer)
|
| 17 |
|
| 18 |
# Load T5 for paraphrasing
|
| 19 |
-
t5_pipe = pipeline("text2text-generation", model="t5-base")
|
| 20 |
|
| 21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def chunk_text(text, max_tokens=300):
|
| 23 |
paragraphs = text.split("\n\n")
|
| 24 |
chunks, current = [], ""
|
|
@@ -32,7 +38,7 @@ def chunk_text(text, max_tokens=300):
|
|
| 32 |
chunks.append(current.strip())
|
| 33 |
return chunks
|
| 34 |
|
| 35 |
-
#
|
| 36 |
def generate_phi_prompt(text, instruction):
|
| 37 |
chunks = chunk_text(text)
|
| 38 |
outputs = []
|
|
@@ -45,7 +51,7 @@ def generate_phi_prompt(text, instruction):
|
|
| 45 |
outputs.append(result.strip())
|
| 46 |
return "\n\n".join(outputs)
|
| 47 |
|
| 48 |
-
#
|
| 49 |
def fix_grammar(text):
|
| 50 |
return generate_phi_prompt(text, "Correct all grammar and punctuation errors in the following text. Provide only the corrected version:")
|
| 51 |
|
|
@@ -63,25 +69,60 @@ def paraphrase(text):
|
|
| 63 |
outputs.append(output)
|
| 64 |
return "\n\n".join(outputs)
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
# Gradio UI
|
| 67 |
with gr.Blocks() as demo:
|
| 68 |
-
gr.Markdown("# ✍️
|
| 69 |
-
gr.Markdown("Fix grammar, improve tone and fluency,
|
| 70 |
|
| 71 |
with gr.Row():
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
with gr.Row():
|
| 75 |
btn_grammar = gr.Button("✔️ Fix Grammar")
|
| 76 |
btn_tone = gr.Button("🎯 Improve Tone")
|
| 77 |
btn_fluency = gr.Button("🔄 Improve Fluency")
|
| 78 |
btn_paraphrase = gr.Button("🌀 Paraphrase")
|
|
|
|
| 79 |
|
| 80 |
output_text = gr.Textbox(lines=12, label="Output")
|
|
|
|
| 81 |
|
| 82 |
btn_grammar.click(fn=fix_grammar, inputs=input_text, outputs=output_text)
|
| 83 |
btn_tone.click(fn=improve_tone, inputs=input_text, outputs=output_text)
|
| 84 |
btn_fluency.click(fn=improve_fluency, inputs=input_text, outputs=output_text)
|
| 85 |
btn_paraphrase.click(fn=paraphrase, inputs=input_text, outputs=output_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSequenceClassification
|
| 3 |
import os
|
| 4 |
from huggingface_hub import login
|
| 5 |
+
import torch
|
| 6 |
|
| 7 |
+
# Authenticate with Hugging Face
|
| 8 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
| 9 |
login(token=HUGGINGFACE_TOKEN)
|
| 10 |
|
| 11 |
+
# Load Phi-4 Mini
|
| 12 |
phi_model_id = "microsoft/phi-4-mini-instruct"
|
| 13 |
phi_tokenizer = AutoTokenizer.from_pretrained(phi_model_id, token=HUGGINGFACE_TOKEN)
|
| 14 |
phi_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 17 |
phi_pipe = pipeline("text-generation", model=phi_model, tokenizer=phi_tokenizer)
|
| 18 |
|
| 19 |
# Load T5 for paraphrasing
|
| 20 |
+
t5_pipe = pipeline("text2text-generation", model="google-t5/t5-base")
|
| 21 |
|
| 22 |
+
# Load AI Detector
|
| 23 |
+
ai_model_id = "openai-community/roberta-base-openai-detector"
|
| 24 |
+
ai_tokenizer = AutoTokenizer.from_pretrained(ai_model_id)
|
| 25 |
+
ai_model = AutoModelForSequenceClassification.from_pretrained(ai_model_id)
|
| 26 |
+
|
| 27 |
+
# Text chunking
|
| 28 |
def chunk_text(text, max_tokens=300):
|
| 29 |
paragraphs = text.split("\n\n")
|
| 30 |
chunks, current = [], ""
|
|
|
|
| 38 |
chunks.append(current.strip())
|
| 39 |
return chunks
|
| 40 |
|
| 41 |
+
# Phi-based instruction
|
| 42 |
def generate_phi_prompt(text, instruction):
|
| 43 |
chunks = chunk_text(text)
|
| 44 |
outputs = []
|
|
|
|
| 51 |
outputs.append(result.strip())
|
| 52 |
return "\n\n".join(outputs)
|
| 53 |
|
| 54 |
+
# Functions for each tool
|
| 55 |
def fix_grammar(text):
|
| 56 |
return generate_phi_prompt(text, "Correct all grammar and punctuation errors in the following text. Provide only the corrected version:")
|
| 57 |
|
|
|
|
| 69 |
outputs.append(output)
|
| 70 |
return "\n\n".join(outputs)
|
| 71 |
|
| 72 |
+
# Upload/download handlers
|
| 73 |
+
def load_file(file_obj):
|
| 74 |
+
if file_obj is None:
|
| 75 |
+
return ""
|
| 76 |
+
return file_obj.read().decode("utf-8")
|
| 77 |
+
|
| 78 |
+
def save_file(text):
|
| 79 |
+
path = "/tmp/output.txt"
|
| 80 |
+
with open(path, "w", encoding="utf-8") as f:
|
| 81 |
+
f.write(text)
|
| 82 |
+
return path
|
| 83 |
+
|
| 84 |
+
# AI Detection function
|
| 85 |
+
def detect_ai_text(text):
|
| 86 |
+
inputs = ai_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
logits = ai_model(**inputs).logits
|
| 89 |
+
probs = torch.softmax(logits, dim=1).squeeze()
|
| 90 |
+
return {
|
| 91 |
+
"Likely Human": round(probs[0].item(), 2),
|
| 92 |
+
"Likely AI-Generated": round(probs[1].item(), 2)
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
# Gradio UI
|
| 96 |
with gr.Blocks() as demo:
|
| 97 |
+
gr.Markdown("# ✍️ AI Writing Assistant + Detector")
|
| 98 |
+
gr.Markdown("Fix grammar, improve tone and fluency, paraphrase text, detect AI content, and upload/download files.")
|
| 99 |
|
| 100 |
with gr.Row():
|
| 101 |
+
file_input = gr.File(label="📂 Upload .txt File", file_types=[".txt"])
|
| 102 |
+
load_btn = gr.Button("📥 Load Text")
|
| 103 |
+
input_text = gr.Textbox(lines=12, label="Or Paste Text")
|
| 104 |
+
|
| 105 |
+
load_btn.click(fn=load_file, inputs=file_input, outputs=input_text)
|
| 106 |
|
| 107 |
with gr.Row():
|
| 108 |
btn_grammar = gr.Button("✔️ Fix Grammar")
|
| 109 |
btn_tone = gr.Button("🎯 Improve Tone")
|
| 110 |
btn_fluency = gr.Button("🔄 Improve Fluency")
|
| 111 |
btn_paraphrase = gr.Button("🌀 Paraphrase")
|
| 112 |
+
btn_detect = gr.Button("🕵️ Detect AI vs Human")
|
| 113 |
|
| 114 |
output_text = gr.Textbox(lines=12, label="Output")
|
| 115 |
+
ai_output = gr.Label(label="AI Detection Result")
|
| 116 |
|
| 117 |
btn_grammar.click(fn=fix_grammar, inputs=input_text, outputs=output_text)
|
| 118 |
btn_tone.click(fn=improve_tone, inputs=input_text, outputs=output_text)
|
| 119 |
btn_fluency.click(fn=improve_fluency, inputs=input_text, outputs=output_text)
|
| 120 |
btn_paraphrase.click(fn=paraphrase, inputs=input_text, outputs=output_text)
|
| 121 |
+
btn_detect.click(fn=detect_ai_text, inputs=input_text, outputs=ai_output)
|
| 122 |
+
|
| 123 |
+
gr.Markdown("## 📤 Download Output")
|
| 124 |
+
download_btn = gr.Button("💾 Download as .txt")
|
| 125 |
+
download_file = gr.File(label="Click to download", interactive=True)
|
| 126 |
+
download_btn.click(fn=save_file, inputs=output_text, outputs=download_file)
|
| 127 |
|
| 128 |
demo.launch()
|