Spaces:
Sleeping
Sleeping
| from sentence_transformers import SentenceTransformer | |
| def get_embedding_function(): | |
| # Load the local embedding model | |
| model = SentenceTransformer('all-MiniLM-L6-v2') # You can choose another model from Hugging Face | |
| # Create an embedding function with `embed_documents` and `embed_query` | |
| class EmbeddingsWrapper: | |
| def embed_documents(self, texts): | |
| """Embed a list of documents (texts).""" | |
| embeddings = model.encode(texts, convert_to_tensor=False) | |
| # Convert to list to avoid ambiguity with array truth values | |
| return [embedding.tolist() if hasattr(embedding, "tolist") else embedding for embedding in embeddings] | |
| def embed_query(self, text): | |
| """Embed a single query.""" | |
| embedding = model.encode([text], convert_to_tensor=False)[0] | |
| return embedding.tolist() if hasattr(embedding, "tolist") else embedding | |
| return EmbeddingsWrapper() |