interpares-chat / get_embedding_function.py
elmadany's picture
Create get_embedding_function.py
c448099 verified
raw
history blame
950 Bytes
from sentence_transformers import SentenceTransformer
def get_embedding_function():
# Load the local embedding model
model = SentenceTransformer('all-MiniLM-L6-v2') # You can choose another model from Hugging Face
# Create an embedding function with `embed_documents` and `embed_query`
class EmbeddingsWrapper:
def embed_documents(self, texts):
"""Embed a list of documents (texts)."""
embeddings = model.encode(texts, convert_to_tensor=False)
# Convert to list to avoid ambiguity with array truth values
return [embedding.tolist() if hasattr(embedding, "tolist") else embedding for embedding in embeddings]
def embed_query(self, text):
"""Embed a single query."""
embedding = model.encode([text], convert_to_tensor=False)[0]
return embedding.tolist() if hasattr(embedding, "tolist") else embedding
return EmbeddingsWrapper()