Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download | |
| from depth_anything_v2.dpt import DepthAnythingV2 | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| model_configs = { | |
| 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
| } | |
| encoder = 'vitl' | |
| model = DepthAnythingV2(**model_configs[encoder]) | |
| model_path = hf_hub_download( | |
| repo_id="depth-anything/Depth-Anything-V2-Large", | |
| filename=f"depth_anything_v2_{encoder}.pth", | |
| repo_type="model" | |
| ) | |
| state_dict = torch.load(model_path, map_location="cpu") | |
| model.load_state_dict(state_dict) | |
| model = model.to(DEVICE).eval() | |
| def infer(img): | |
| with torch.no_grad(): | |
| depth = model.infer_image(img[:, :, ::-1]) # BGR to RGB if needed | |
| # Normalize to 0-255 and convert to uint8 | |
| depth_norm = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
| return depth_norm.astype(np.uint8) | |
| iface = gr.Interface(fn=infer, inputs=gr.Image(type="numpy"), outputs=gr.Image()) | |
| iface.launch() | |