Create tdd_svd_scheduler.py
Browse files- tdd_svd_scheduler.py +472 -0
tdd_svd_scheduler.py
ADDED
|
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
|
| 21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from diffusers.utils import BaseOutput, logging
|
| 23 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 24 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class TDDSVDStochasticIterativeSchedulerOutput(BaseOutput):
|
| 32 |
+
"""
|
| 33 |
+
Output class for the scheduler's `step` function.
|
| 34 |
+
Args:
|
| 35 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 36 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
| 37 |
+
denoising loop.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
prev_sample: torch.FloatTensor
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class TDDSVDStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
|
| 44 |
+
"""
|
| 45 |
+
Multistep and onestep sampling for consistency models.
|
| 46 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
| 47 |
+
methods the library implements for all schedulers such as loading and saving.
|
| 48 |
+
Args:
|
| 49 |
+
num_train_timesteps (`int`, defaults to 40):
|
| 50 |
+
The number of diffusion steps to train the model.
|
| 51 |
+
sigma_min (`float`, defaults to 0.002):
|
| 52 |
+
Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
|
| 53 |
+
sigma_max (`float`, defaults to 80.0):
|
| 54 |
+
Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
|
| 55 |
+
sigma_data (`float`, defaults to 0.5):
|
| 56 |
+
The standard deviation of the data distribution from the EDM
|
| 57 |
+
[paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
|
| 58 |
+
s_noise (`float`, defaults to 1.0):
|
| 59 |
+
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
|
| 60 |
+
1.011]. Defaults to 1.0 from the original implementation.
|
| 61 |
+
rho (`float`, defaults to 7.0):
|
| 62 |
+
The parameter for calculating the Karras sigma schedule from the EDM
|
| 63 |
+
[paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
|
| 64 |
+
clip_denoised (`bool`, defaults to `True`):
|
| 65 |
+
Whether to clip the denoised outputs to `(-1, 1)`.
|
| 66 |
+
timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
|
| 67 |
+
An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
|
| 68 |
+
increasing order.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
order = 1
|
| 72 |
+
|
| 73 |
+
@register_to_config
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
num_train_timesteps: int = 40,
|
| 77 |
+
sigma_min: float = 0.002,
|
| 78 |
+
sigma_max: float = 80.0,
|
| 79 |
+
sigma_data: float = 0.5,
|
| 80 |
+
s_noise: float = 1.0,
|
| 81 |
+
rho: float = 7.0,
|
| 82 |
+
clip_denoised: bool = True,
|
| 83 |
+
eta: float = 0.3,
|
| 84 |
+
):
|
| 85 |
+
# standard deviation of the initial noise distribution
|
| 86 |
+
self.init_noise_sigma = (sigma_max**2 + 1) ** 0.5
|
| 87 |
+
# self.init_noise_sigma = sigma_max
|
| 88 |
+
|
| 89 |
+
ramp = np.linspace(0, 1, num_train_timesteps)
|
| 90 |
+
sigmas = self._convert_to_karras(ramp)
|
| 91 |
+
sigmas = np.concatenate([sigmas, np.array([0])])
|
| 92 |
+
timesteps = self.sigma_to_t(sigmas)
|
| 93 |
+
|
| 94 |
+
# setable values
|
| 95 |
+
self.num_inference_steps = None
|
| 96 |
+
self.sigmas = torch.from_numpy(sigmas)
|
| 97 |
+
self.timesteps = torch.from_numpy(timesteps)
|
| 98 |
+
self.custom_timesteps = False
|
| 99 |
+
self.is_scale_input_called = False
|
| 100 |
+
self._step_index = None
|
| 101 |
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
| 102 |
+
|
| 103 |
+
self.set_eta(eta)
|
| 104 |
+
self.original_timesteps = self.timesteps.clone()
|
| 105 |
+
self.original_sigmas = self.sigmas.clone()
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
| 109 |
+
if schedule_timesteps is None:
|
| 110 |
+
schedule_timesteps = self.timesteps
|
| 111 |
+
|
| 112 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
| 113 |
+
return indices.item()
|
| 114 |
+
|
| 115 |
+
@property
|
| 116 |
+
def step_index(self):
|
| 117 |
+
"""
|
| 118 |
+
The index counter for current timestep. It will increae 1 after each scheduler step.
|
| 119 |
+
"""
|
| 120 |
+
return self._step_index
|
| 121 |
+
|
| 122 |
+
def scale_model_input(
|
| 123 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
| 124 |
+
) -> torch.FloatTensor:
|
| 125 |
+
"""
|
| 126 |
+
Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.
|
| 127 |
+
Args:
|
| 128 |
+
sample (`torch.FloatTensor`):
|
| 129 |
+
The input sample.
|
| 130 |
+
timestep (`float` or `torch.FloatTensor`):
|
| 131 |
+
The current timestep in the diffusion chain.
|
| 132 |
+
Returns:
|
| 133 |
+
`torch.FloatTensor`:
|
| 134 |
+
A scaled input sample.
|
| 135 |
+
"""
|
| 136 |
+
# Get sigma corresponding to timestep
|
| 137 |
+
if self.step_index is None:
|
| 138 |
+
self._init_step_index(timestep)
|
| 139 |
+
|
| 140 |
+
sigma = self.sigmas[self.step_index]
|
| 141 |
+
sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
| 142 |
+
|
| 143 |
+
self.is_scale_input_called = True
|
| 144 |
+
return sample
|
| 145 |
+
|
| 146 |
+
# def _sigma_to_t(self, sigma, log_sigmas):
|
| 147 |
+
# # get log sigma
|
| 148 |
+
# log_sigma = np.log(np.maximum(sigma, 1e-10))
|
| 149 |
+
|
| 150 |
+
# # get distribution
|
| 151 |
+
# dists = log_sigma - log_sigmas[:, np.newaxis]
|
| 152 |
+
|
| 153 |
+
# # get sigmas range
|
| 154 |
+
# low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
| 155 |
+
# high_idx = low_idx + 1
|
| 156 |
+
|
| 157 |
+
# low = log_sigmas[low_idx]
|
| 158 |
+
# high = log_sigmas[high_idx]
|
| 159 |
+
|
| 160 |
+
# # interpolate sigmas
|
| 161 |
+
# w = (low - log_sigma) / (low - high)
|
| 162 |
+
# w = np.clip(w, 0, 1)
|
| 163 |
+
|
| 164 |
+
# # transform interpolation to time range
|
| 165 |
+
# t = (1 - w) * low_idx + w * high_idx
|
| 166 |
+
# t = t.reshape(sigma.shape)
|
| 167 |
+
# return t
|
| 168 |
+
|
| 169 |
+
def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
|
| 170 |
+
"""
|
| 171 |
+
Gets scaled timesteps from the Karras sigmas for input to the consistency model.
|
| 172 |
+
Args:
|
| 173 |
+
sigmas (`float` or `np.ndarray`):
|
| 174 |
+
A single Karras sigma or an array of Karras sigmas.
|
| 175 |
+
Returns:
|
| 176 |
+
`float` or `np.ndarray`:
|
| 177 |
+
A scaled input timestep or scaled input timestep array.
|
| 178 |
+
"""
|
| 179 |
+
if not isinstance(sigmas, np.ndarray):
|
| 180 |
+
sigmas = np.array(sigmas, dtype=np.float64)
|
| 181 |
+
|
| 182 |
+
timesteps = 0.25 * np.log(sigmas + 1e-44)
|
| 183 |
+
|
| 184 |
+
return timesteps
|
| 185 |
+
|
| 186 |
+
def set_timesteps(
|
| 187 |
+
self,
|
| 188 |
+
num_inference_steps: Optional[int] = None,
|
| 189 |
+
device: Union[str, torch.device] = None,
|
| 190 |
+
timesteps: Optional[List[int]] = None,
|
| 191 |
+
):
|
| 192 |
+
"""
|
| 193 |
+
Sets the timesteps used for the diffusion chain (to be run before inference).
|
| 194 |
+
Args:
|
| 195 |
+
num_inference_steps (`int`):
|
| 196 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
| 197 |
+
device (`str` or `torch.device`, *optional*):
|
| 198 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 199 |
+
timesteps (`List[int]`, *optional*):
|
| 200 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
| 201 |
+
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
|
| 202 |
+
`num_inference_steps` must be `None`.
|
| 203 |
+
"""
|
| 204 |
+
if num_inference_steps is None and timesteps is None:
|
| 205 |
+
raise ValueError(
|
| 206 |
+
"Exactly one of `num_inference_steps` or `timesteps` must be supplied."
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
if num_inference_steps is not None and timesteps is not None:
|
| 210 |
+
raise ValueError(
|
| 211 |
+
"Can only pass one of `num_inference_steps` or `timesteps`."
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Follow DDPMScheduler custom timesteps logic
|
| 215 |
+
if timesteps is not None:
|
| 216 |
+
for i in range(1, len(timesteps)):
|
| 217 |
+
if timesteps[i] >= timesteps[i - 1]:
|
| 218 |
+
raise ValueError("`timesteps` must be in descending order.")
|
| 219 |
+
|
| 220 |
+
if timesteps[0] >= self.config.num_train_timesteps:
|
| 221 |
+
raise ValueError(
|
| 222 |
+
f"`timesteps` must start before `self.config.train_timesteps`:"
|
| 223 |
+
f" {self.config.num_train_timesteps}."
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
timesteps = np.array(timesteps, dtype=np.int64)
|
| 227 |
+
self.custom_timesteps = True
|
| 228 |
+
else:
|
| 229 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
| 230 |
+
raise ValueError(
|
| 231 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
| 232 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
| 233 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
self.num_inference_steps = num_inference_steps
|
| 237 |
+
|
| 238 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
| 239 |
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().copy().astype(np.int64)
|
| 240 |
+
self.custom_timesteps = False
|
| 241 |
+
|
| 242 |
+
self.original_indices = timesteps
|
| 243 |
+
# Map timesteps to Karras sigmas directly for multistep sampling
|
| 244 |
+
# See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
|
| 245 |
+
num_train_timesteps = self.config.num_train_timesteps
|
| 246 |
+
ramp = timesteps.copy()
|
| 247 |
+
ramp = ramp / (num_train_timesteps - 1)
|
| 248 |
+
sigmas = self._convert_to_karras(ramp)
|
| 249 |
+
timesteps = self.sigma_to_t(sigmas)
|
| 250 |
+
|
| 251 |
+
sigmas = np.concatenate([sigmas, [0]]).astype(np.float32)
|
| 252 |
+
self.sigmas = torch.from_numpy(sigmas).to(device=device)
|
| 253 |
+
|
| 254 |
+
if str(device).startswith("mps"):
|
| 255 |
+
# mps does not support float64
|
| 256 |
+
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
|
| 257 |
+
else:
|
| 258 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device)
|
| 259 |
+
|
| 260 |
+
self._step_index = None
|
| 261 |
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
| 262 |
+
|
| 263 |
+
# Modified _convert_to_karras implementation that takes in ramp as argument
|
| 264 |
+
def _convert_to_karras(self, ramp):
|
| 265 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
| 266 |
+
|
| 267 |
+
sigma_min: float = self.config.sigma_min
|
| 268 |
+
sigma_max: float = self.config.sigma_max
|
| 269 |
+
|
| 270 |
+
rho = self.config.rho
|
| 271 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
| 272 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
| 273 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
| 274 |
+
return sigmas
|
| 275 |
+
|
| 276 |
+
def get_scalings(self, sigma):
|
| 277 |
+
sigma_data = self.config.sigma_data
|
| 278 |
+
|
| 279 |
+
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
| 280 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
| 281 |
+
return c_skip, c_out
|
| 282 |
+
|
| 283 |
+
def get_scalings_for_boundary_condition(self, sigma):
|
| 284 |
+
"""
|
| 285 |
+
Gets the scalings used in the consistency model parameterization (from Appendix C of the
|
| 286 |
+
[paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.
|
| 287 |
+
<Tip>
|
| 288 |
+
`epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.
|
| 289 |
+
</Tip>
|
| 290 |
+
Args:
|
| 291 |
+
sigma (`torch.FloatTensor`):
|
| 292 |
+
The current sigma in the Karras sigma schedule.
|
| 293 |
+
Returns:
|
| 294 |
+
`tuple`:
|
| 295 |
+
A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
|
| 296 |
+
(which weights the consistency model output) is the second element.
|
| 297 |
+
"""
|
| 298 |
+
sigma_min = self.config.sigma_min
|
| 299 |
+
sigma_data = self.config.sigma_data
|
| 300 |
+
|
| 301 |
+
c_skip = sigma_data**2 / ((sigma) ** 2 + sigma_data**2)
|
| 302 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
| 303 |
+
return c_skip, c_out
|
| 304 |
+
|
| 305 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
| 306 |
+
def _init_step_index(self, timestep):
|
| 307 |
+
if isinstance(timestep, torch.Tensor):
|
| 308 |
+
timestep = timestep.to(self.timesteps.device)
|
| 309 |
+
|
| 310 |
+
index_candidates = (self.timesteps == timestep).nonzero()
|
| 311 |
+
|
| 312 |
+
# The sigma index that is taken for the **very** first `step`
|
| 313 |
+
# is always the second index (or the last index if there is only 1)
|
| 314 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
| 315 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
| 316 |
+
if len(index_candidates) > 1:
|
| 317 |
+
step_index = index_candidates[1]
|
| 318 |
+
else:
|
| 319 |
+
step_index = index_candidates[0]
|
| 320 |
+
|
| 321 |
+
self._step_index = step_index.item()
|
| 322 |
+
|
| 323 |
+
def step(
|
| 324 |
+
self,
|
| 325 |
+
model_output: torch.FloatTensor,
|
| 326 |
+
timestep: Union[float, torch.FloatTensor],
|
| 327 |
+
sample: torch.FloatTensor,
|
| 328 |
+
generator: Optional[torch.Generator] = None,
|
| 329 |
+
return_dict: bool = True,
|
| 330 |
+
) -> Union[TDDSVDStochasticIterativeSchedulerOutput, Tuple]:
|
| 331 |
+
"""
|
| 332 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
| 333 |
+
process from the learned model outputs (most often the predicted noise).
|
| 334 |
+
Args:
|
| 335 |
+
model_output (`torch.FloatTensor`):
|
| 336 |
+
The direct output from the learned diffusion model.
|
| 337 |
+
timestep (`float`):
|
| 338 |
+
The current timestep in the diffusion chain.
|
| 339 |
+
sample (`torch.FloatTensor`):
|
| 340 |
+
A current instance of a sample created by the diffusion process.
|
| 341 |
+
generator (`torch.Generator`, *optional*):
|
| 342 |
+
A random number generator.
|
| 343 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 344 |
+
Whether or not to return a
|
| 345 |
+
[`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] or `tuple`.
|
| 346 |
+
Returns:
|
| 347 |
+
[`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] or `tuple`:
|
| 348 |
+
If return_dict is `True`,
|
| 349 |
+
[`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] is returned,
|
| 350 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
| 351 |
+
"""
|
| 352 |
+
|
| 353 |
+
if (
|
| 354 |
+
isinstance(timestep, int)
|
| 355 |
+
or isinstance(timestep, torch.IntTensor)
|
| 356 |
+
or isinstance(timestep, torch.LongTensor)
|
| 357 |
+
):
|
| 358 |
+
raise ValueError(
|
| 359 |
+
(
|
| 360 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
| 361 |
+
f" `{self.__class__}.step()` is not supported. Make sure to pass"
|
| 362 |
+
" one of the `scheduler.timesteps` as a timestep."
|
| 363 |
+
),
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
if not self.is_scale_input_called:
|
| 367 |
+
logger.warning(
|
| 368 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
| 369 |
+
"See `StableDiffusionPipeline` for a usage example."
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
sigma_min = self.config.sigma_min
|
| 373 |
+
sigma_max = self.config.sigma_max
|
| 374 |
+
|
| 375 |
+
if self.step_index is None:
|
| 376 |
+
self._init_step_index(timestep)
|
| 377 |
+
|
| 378 |
+
# sigma_next corresponds to next_t in original implementation
|
| 379 |
+
next_step_index = self.step_index + 1
|
| 380 |
+
|
| 381 |
+
sigma = self.sigmas[self.step_index]
|
| 382 |
+
if next_step_index < len(self.sigmas):
|
| 383 |
+
sigma_next = self.sigmas[next_step_index]
|
| 384 |
+
else:
|
| 385 |
+
# Set sigma_next to sigma_min
|
| 386 |
+
sigma_next = self.sigmas[-1]
|
| 387 |
+
|
| 388 |
+
# Get scalings for boundary conditions
|
| 389 |
+
c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)
|
| 390 |
+
|
| 391 |
+
if next_step_index < len(self.original_indices):
|
| 392 |
+
next_step_original_index = self.original_indices[next_step_index]
|
| 393 |
+
step_s_original_index = int(next_step_original_index + self.eta * (self.config.num_train_timesteps - 1 - next_step_original_index))
|
| 394 |
+
sigma_s = self.original_sigmas[step_s_original_index]
|
| 395 |
+
else:
|
| 396 |
+
sigma_s = self.sigmas[-1]
|
| 397 |
+
|
| 398 |
+
# 1. Denoise model output using boundary conditions
|
| 399 |
+
denoised = c_out * model_output + c_skip * sample
|
| 400 |
+
if self.config.clip_denoised:
|
| 401 |
+
denoised = denoised.clamp(-1, 1)
|
| 402 |
+
|
| 403 |
+
d = (sample - denoised) / sigma
|
| 404 |
+
sample_s = sample + d * (sigma_s - sigma)
|
| 405 |
+
|
| 406 |
+
# 2. Sample z ~ N(0, s_noise^2 * I)
|
| 407 |
+
# Noise is not used for onestep sampling.
|
| 408 |
+
if len(self.timesteps) > 1:
|
| 409 |
+
noise = randn_tensor(
|
| 410 |
+
model_output.shape,
|
| 411 |
+
dtype=model_output.dtype,
|
| 412 |
+
device=model_output.device,
|
| 413 |
+
generator=generator,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
noise = torch.zeros_like(model_output)
|
| 417 |
+
z = noise * self.config.s_noise
|
| 418 |
+
|
| 419 |
+
sigma_hat = sigma_next.clamp(min = 0, max = sigma_max)
|
| 420 |
+
# sigma_hat = sigma_next.clamp(min = sigma_min, max = sigma_max)
|
| 421 |
+
|
| 422 |
+
# print("denoise currently")
|
| 423 |
+
# print(sigma_hat)
|
| 424 |
+
|
| 425 |
+
# origin
|
| 426 |
+
# prev_sample = denoised + z * sigma_hat
|
| 427 |
+
prev_sample = sample_s + z * (sigma_hat - sigma_s)
|
| 428 |
+
|
| 429 |
+
# upon completion increase step index by one
|
| 430 |
+
self._step_index += 1
|
| 431 |
+
|
| 432 |
+
if not return_dict:
|
| 433 |
+
return (prev_sample,)
|
| 434 |
+
|
| 435 |
+
return TDDSVDStochasticIterativeSchedulerOutput(prev_sample=prev_sample)
|
| 436 |
+
|
| 437 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
| 438 |
+
def add_noise(
|
| 439 |
+
self,
|
| 440 |
+
original_samples: torch.FloatTensor,
|
| 441 |
+
noise: torch.FloatTensor,
|
| 442 |
+
timesteps: torch.FloatTensor,
|
| 443 |
+
) -> torch.FloatTensor:
|
| 444 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
| 445 |
+
sigmas = self.sigmas.to(
|
| 446 |
+
device=original_samples.device, dtype=original_samples.dtype
|
| 447 |
+
)
|
| 448 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
| 449 |
+
# mps does not support float64
|
| 450 |
+
schedule_timesteps = self.timesteps.to(
|
| 451 |
+
original_samples.device, dtype=torch.float32
|
| 452 |
+
)
|
| 453 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
| 454 |
+
else:
|
| 455 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
| 456 |
+
timesteps = timesteps.to(original_samples.device)
|
| 457 |
+
|
| 458 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
| 459 |
+
|
| 460 |
+
sigma = sigmas[step_indices].flatten()
|
| 461 |
+
while len(sigma.shape) < len(original_samples.shape):
|
| 462 |
+
sigma = sigma.unsqueeze(-1)
|
| 463 |
+
|
| 464 |
+
noisy_samples = original_samples + noise * sigma
|
| 465 |
+
return noisy_samples
|
| 466 |
+
|
| 467 |
+
def __len__(self):
|
| 468 |
+
return self.config.num_train_timesteps
|
| 469 |
+
|
| 470 |
+
def set_eta(self, eta: float):
|
| 471 |
+
assert 0.0 <= eta <= 1.0
|
| 472 |
+
self.eta = eta
|