Spaces:
Sleeping
Sleeping
Upload ModelArchitecture.py
Browse files- ModelArchitecture.py +346 -0
ModelArchitecture.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import math
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
from typing import Optional
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@dataclass
|
| 10 |
+
class ModelConfig:
|
| 11 |
+
vocab_size: int
|
| 12 |
+
hidden_size: int
|
| 13 |
+
n_heads: int
|
| 14 |
+
n_kv_heads: int
|
| 15 |
+
n_kv_groups: int
|
| 16 |
+
head_dim: int
|
| 17 |
+
n_layers: int
|
| 18 |
+
attention_bias: bool
|
| 19 |
+
intermediate_size: int
|
| 20 |
+
mlp_bias: bool
|
| 21 |
+
eps: float
|
| 22 |
+
dropout: float
|
| 23 |
+
max_position_embeddings: int
|
| 24 |
+
pre_norm: bool
|
| 25 |
+
tie_weights: bool
|
| 26 |
+
max_seq_len: int
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class RMSNorm(nn.Module):
|
| 30 |
+
def __init__(self, config: ModelConfig):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.eps = config.eps
|
| 33 |
+
self.weight = nn.Parameter(torch.ones(config.hidden_size))
|
| 34 |
+
|
| 35 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 36 |
+
rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
| 37 |
+
return (x / rms) * self.weight
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class RotaryEmbedding(nn.Module):
|
| 41 |
+
def __init__(self, head_dim, max_position_embeddings=2048):
|
| 42 |
+
super().__init__()
|
| 43 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
| 44 |
+
t = torch.arange(max_position_embeddings, dtype=torch.float32)
|
| 45 |
+
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
| 46 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 47 |
+
self.register_buffer("cos", emb.cos()[None, None, :, :], persistent=False)
|
| 48 |
+
self.register_buffer("sin", emb.sin()[None, None, :, :], persistent=False)
|
| 49 |
+
|
| 50 |
+
def forward(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
| 51 |
+
cos = self.cos[:, :, :seq_len, :].to(device=device, dtype=dtype)
|
| 52 |
+
sin = self.sin[:, :, :seq_len, :].to(device=device, dtype=dtype)
|
| 53 |
+
return cos, sin
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def apply_rotary(x, cos, sin):
|
| 57 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
| 58 |
+
x_rot = torch.stack([-x2, x1], dim=-1).reshape_as(x)
|
| 59 |
+
return (x * cos) + (x_rot * sin)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class GroupedMultiQueryAttention(nn.Module):
|
| 63 |
+
def __init__(self, config: ModelConfig):
|
| 64 |
+
super().__init__()
|
| 65 |
+
self.hidden_size = config.hidden_size
|
| 66 |
+
self.n_heads = config.n_heads
|
| 67 |
+
self.n_kv_heads = config.n_kv_heads
|
| 68 |
+
self.head_dim = config.head_dim
|
| 69 |
+
self.attention_bias = config.attention_bias
|
| 70 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 71 |
+
|
| 72 |
+
if self.n_heads * self.head_dim != self.hidden_size:
|
| 73 |
+
raise ValueError("hidden_size must equal n_heads * head_dim")
|
| 74 |
+
|
| 75 |
+
# derive n_kv_groups if None
|
| 76 |
+
if config.n_kv_groups is None:
|
| 77 |
+
if self.n_kv_heads == 0:
|
| 78 |
+
raise ValueError("n_kv_heads must be > 0")
|
| 79 |
+
self.n_kv_groups = self.n_heads // self.n_kv_heads
|
| 80 |
+
if self.n_heads % self.n_kv_heads != 0:
|
| 81 |
+
raise ValueError("n_heads must be divisible by n_kv_heads to derive groups")
|
| 82 |
+
else:
|
| 83 |
+
self.n_kv_groups = config.n_kv_groups
|
| 84 |
+
if self.n_kv_heads * self.n_kv_groups != self.n_heads:
|
| 85 |
+
raise ValueError("n_heads must equal n_kv_heads * n_kv_groups")
|
| 86 |
+
|
| 87 |
+
self.q_proj = nn.Linear(self.hidden_size, self.n_heads * self.head_dim, bias=self.attention_bias)
|
| 88 |
+
self.k_proj = nn.Linear(self.hidden_size, self.n_kv_heads * self.head_dim, bias=self.attention_bias)
|
| 89 |
+
self.v_proj = nn.Linear(self.hidden_size, self.n_kv_heads * self.head_dim, bias=self.attention_bias)
|
| 90 |
+
self.w_o = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 91 |
+
self.rope = RotaryEmbedding(self.head_dim, config.max_position_embeddings)
|
| 92 |
+
|
| 93 |
+
def forward(self, x):
|
| 94 |
+
B, T, _ = x.shape
|
| 95 |
+
device = x.device
|
| 96 |
+
dtype = x.dtype
|
| 97 |
+
|
| 98 |
+
q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 99 |
+
k = self.k_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2)
|
| 100 |
+
v = self.v_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2)
|
| 101 |
+
|
| 102 |
+
cos, sin = self.rope(T, device=device, dtype=dtype)
|
| 103 |
+
q = apply_rotary(q, cos, sin)
|
| 104 |
+
k = apply_rotary(k, cos, sin)
|
| 105 |
+
|
| 106 |
+
if self.n_kv_groups != 1:
|
| 107 |
+
k = k.repeat_interleave(self.n_kv_groups, dim=1)
|
| 108 |
+
v = v.repeat_interleave(self.n_kv_groups, dim=1)
|
| 109 |
+
|
| 110 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
| 111 |
+
|
| 112 |
+
# causal mask
|
| 113 |
+
mask = torch.triu(torch.full((T, T), float("-inf"), device=device, dtype=dtype), diagonal=1)
|
| 114 |
+
scores = scores + mask.unsqueeze(0).unsqueeze(0)
|
| 115 |
+
attn = torch.softmax(scores, dim=-1)
|
| 116 |
+
attn = self.dropout(attn)
|
| 117 |
+
|
| 118 |
+
out = torch.matmul(attn, v)
|
| 119 |
+
out = out.transpose(1, 2).contiguous().view(B, T, self.hidden_size)
|
| 120 |
+
return self.w_o(out)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class SwiGLUFeedForward(nn.Module):
|
| 124 |
+
def __init__(self, config: ModelConfig):
|
| 125 |
+
super().__init__()
|
| 126 |
+
self.hidden_size = config.hidden_size
|
| 127 |
+
self.intermediate_size = config.intermediate_size
|
| 128 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 129 |
+
|
| 130 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size)
|
| 131 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size)
|
| 132 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size)
|
| 133 |
+
self.act = nn.SiLU()
|
| 134 |
+
|
| 135 |
+
def forward(self, x):
|
| 136 |
+
x = self.act(self.gate_proj(x)) * self.up_proj(x)
|
| 137 |
+
x = self.down_proj(self.dropout(x))
|
| 138 |
+
return x
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class TransformerBlock(nn.Module):
|
| 142 |
+
def __init__(self, config: ModelConfig):
|
| 143 |
+
super().__init__()
|
| 144 |
+
self.attention = GroupedMultiQueryAttention(config)
|
| 145 |
+
self.feed_forward = SwiGLUFeedForward(config)
|
| 146 |
+
self.attn_norm = RMSNorm(config)
|
| 147 |
+
self.ffn_norm = RMSNorm(config)
|
| 148 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 149 |
+
self.pre_norm = config.pre_norm
|
| 150 |
+
|
| 151 |
+
def forward(self, x):
|
| 152 |
+
if self.pre_norm:
|
| 153 |
+
x = x + self.dropout(self.attention(self.attn_norm(x)))
|
| 154 |
+
x = x + self.dropout(self.feed_forward(self.ffn_norm(x)))
|
| 155 |
+
else:
|
| 156 |
+
x = self.attn_norm(x + self.dropout(self.attention(x)))
|
| 157 |
+
x = self.ffn_norm(x + self.dropout(self.feed_forward(x)))
|
| 158 |
+
return x
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class Transformer(nn.Module):
|
| 162 |
+
def __init__(self, config: ModelConfig):
|
| 163 |
+
super().__init__()
|
| 164 |
+
self.config = config
|
| 165 |
+
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 166 |
+
self.blocks = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)])
|
| 167 |
+
self.embedding_dropout = nn.Dropout(config.dropout)
|
| 168 |
+
self.final_norm = RMSNorm(config)
|
| 169 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 170 |
+
if config.tie_weights:
|
| 171 |
+
self.lm_head.weight = self.token_embedding.weight
|
| 172 |
+
|
| 173 |
+
self.apply(self._init_weights)
|
| 174 |
+
|
| 175 |
+
def _init_weights(self, module):
|
| 176 |
+
if isinstance(module, nn.Linear):
|
| 177 |
+
nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(max(1, self.config.n_layers)))
|
| 178 |
+
if module.bias is not None:
|
| 179 |
+
nn.init.zeros_(module.bias)
|
| 180 |
+
elif isinstance(module, nn.Embedding):
|
| 181 |
+
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 182 |
+
|
| 183 |
+
def forward(self, input_ids: torch.Tensor, targets: Optional[torch.Tensor] = None):
|
| 184 |
+
x = self.token_embedding(input_ids) * math.sqrt(self.config.hidden_size)
|
| 185 |
+
x = self.embedding_dropout(x)
|
| 186 |
+
for block in self.blocks:
|
| 187 |
+
x = block(x)
|
| 188 |
+
x = self.final_norm(x)
|
| 189 |
+
logits = self.lm_head(x)
|
| 190 |
+
return logits
|
| 191 |
+
|
| 192 |
+
def top_k_top_p_filtering(logits: torch.Tensor, top_k: int = 0, top_p: float = 0.0, filter_value: float = -float('Inf')) -> torch.Tensor:
|
| 193 |
+
"""
|
| 194 |
+
Filter a distribution of logits using top-k and/or nucleus (top-p) filtering.
|
| 195 |
+
This is taken from common implementations (Hugging Face transformers style).
|
| 196 |
+
Args:
|
| 197 |
+
logits: logits distribution shape (batch, vocab)
|
| 198 |
+
top_k: keep only top k tokens with highest probability (0 = no top-k)
|
| 199 |
+
top_p: keep the top tokens with cumulative probability >= top_p (0.0 = no nucleus)
|
| 200 |
+
filter_value: value to set for filtered logits
|
| 201 |
+
Returns:
|
| 202 |
+
filtered logits with the same shape
|
| 203 |
+
"""
|
| 204 |
+
top_k = max(top_k, 0)
|
| 205 |
+
batch_size, vocab_size = logits.size()
|
| 206 |
+
|
| 207 |
+
if top_k > 0:
|
| 208 |
+
# Remove all tokens with a probability less than the top-k tokens
|
| 209 |
+
top_k = min(max(top_k, 1), vocab_size)
|
| 210 |
+
values_to_keep, _ = torch.topk(logits, top_k)
|
| 211 |
+
min_values = values_to_keep[:, -1].unsqueeze(1).expand_as(logits)
|
| 212 |
+
logits = torch.where(logits < min_values, torch.full_like(logits, filter_value), logits)
|
| 213 |
+
|
| 214 |
+
if top_p > 0.0:
|
| 215 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
| 216 |
+
sorted_probs = F.softmax(sorted_logits, dim=-1)
|
| 217 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
| 218 |
+
|
| 219 |
+
# Remove tokens with cumulative probability above the threshold
|
| 220 |
+
sorted_mask = cumulative_probs > top_p
|
| 221 |
+
|
| 222 |
+
# Shift the mask right to keep at least one token
|
| 223 |
+
sorted_mask[..., 1:] = sorted_mask[..., :-1].clone()
|
| 224 |
+
sorted_mask[..., 0] = False
|
| 225 |
+
|
| 226 |
+
indices_to_remove = sorted_mask.scatter(1, sorted_indices, sorted_mask)
|
| 227 |
+
logits = logits.masked_fill(indices_to_remove, filter_value)
|
| 228 |
+
|
| 229 |
+
return logits
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
@torch.no_grad()
|
| 233 |
+
def generate(
|
| 234 |
+
model: Transformer,
|
| 235 |
+
input_ids: torch.LongTensor,
|
| 236 |
+
max_new_tokens: int = 50,
|
| 237 |
+
temperature: float = 1.0,
|
| 238 |
+
top_k: int = 0,
|
| 239 |
+
top_p: float = 0.0,
|
| 240 |
+
do_sample: bool = True,
|
| 241 |
+
eos_token_id: Optional[int] = None,
|
| 242 |
+
pad_token_id: Optional[int] = None,
|
| 243 |
+
device: Optional[torch.device] = None,
|
| 244 |
+
):
|
| 245 |
+
"""
|
| 246 |
+
Autoregressive generation helper for the model. This implementation does NOT use KV cache
|
| 247 |
+
(the model defined in this file does not implement a cache), so generation is performed
|
| 248 |
+
by repeatedly calling the model on the growing sequence. It supports temperature,
|
| 249 |
+
top-k and nucleus (top-p) sampling, greedy decoding, and optional early stopping
|
| 250 |
+
on an `eos_token_id`.
|
| 251 |
+
|
| 252 |
+
Args:
|
| 253 |
+
model: the Transformer instance
|
| 254 |
+
input_ids: (batch, seq_len) input token ids
|
| 255 |
+
max_new_tokens: number of tokens to generate
|
| 256 |
+
temperature: sampling temperature (<=0 or do_sample=False => greedy)
|
| 257 |
+
top_k: top-k filtering (0 disables)
|
| 258 |
+
top_p: nucleus/top-p filtering (0.0 disables)
|
| 259 |
+
do_sample: whether to sample (True) or do greedy decoding (False)
|
| 260 |
+
eos_token_id: optional EOS id to stop generation for individual sequences
|
| 261 |
+
pad_token_id: optional pad id to use for finished sequences
|
| 262 |
+
device: optional torch.device to run on; if None uses model's device
|
| 263 |
+
|
| 264 |
+
Returns:
|
| 265 |
+
tensor of shape (batch, seq_len + generated) with generated tokens appended
|
| 266 |
+
"""
|
| 267 |
+
model.eval()
|
| 268 |
+
if device is None:
|
| 269 |
+
# try to infer device
|
| 270 |
+
try:
|
| 271 |
+
device = next(model.parameters()).device
|
| 272 |
+
except StopIteration:
|
| 273 |
+
device = torch.device('cpu')
|
| 274 |
+
|
| 275 |
+
input_ids = input_ids.to(device)
|
| 276 |
+
|
| 277 |
+
batch_size, seq_len = input_ids.shape
|
| 278 |
+
generated = 0
|
| 279 |
+
unfinished = torch.ones(batch_size, dtype=torch.bool, device=device)
|
| 280 |
+
|
| 281 |
+
for _ in range(max_new_tokens):
|
| 282 |
+
logits = model(input_ids)
|
| 283 |
+
# logits shape: (batch, seq_len_total, vocab)
|
| 284 |
+
next_token_logits = logits[:, -1, :]
|
| 285 |
+
|
| 286 |
+
if temperature <= 0 or not do_sample:
|
| 287 |
+
# Greedy
|
| 288 |
+
next_tokens = torch.argmax(next_token_logits, dim=-1)
|
| 289 |
+
else:
|
| 290 |
+
logits_proc = next_token_logits / max(temperature, 1e-8)
|
| 291 |
+
logits_proc = top_k_top_p_filtering(logits_proc, top_k=top_k, top_p=top_p)
|
| 292 |
+
probs = F.softmax(logits_proc, dim=-1)
|
| 293 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(-1)
|
| 294 |
+
|
| 295 |
+
# If EOS is provided, update finished sequences and pad further tokens
|
| 296 |
+
if eos_token_id is not None:
|
| 297 |
+
is_eos = next_tokens.eq(eos_token_id)
|
| 298 |
+
# sequences that have just finished
|
| 299 |
+
just_finished = unfinished & is_eos
|
| 300 |
+
unfinished = unfinished & (~is_eos)
|
| 301 |
+
|
| 302 |
+
# For sequences already finished, append pad_token_id (if provided), otherwise keep EOS or sampled token
|
| 303 |
+
if pad_token_id is not None and not unfinished.all():
|
| 304 |
+
finished_mask = ~unfinished
|
| 305 |
+
if finished_mask.any():
|
| 306 |
+
next_tokens = next_tokens.masked_fill(finished_mask, pad_token_id)
|
| 307 |
+
|
| 308 |
+
# append
|
| 309 |
+
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=1)
|
| 310 |
+
generated += 1
|
| 311 |
+
|
| 312 |
+
if eos_token_id is not None and not unfinished.any():
|
| 313 |
+
break
|
| 314 |
+
|
| 315 |
+
return input_ids
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def _smoke_test():
|
| 319 |
+
config = ModelConfig(
|
| 320 |
+
vocab_size=128,
|
| 321 |
+
hidden_size=64,
|
| 322 |
+
n_heads=4,
|
| 323 |
+
n_kv_heads=4,
|
| 324 |
+
n_kv_groups=None,
|
| 325 |
+
head_dim=16,
|
| 326 |
+
n_layers=2,
|
| 327 |
+
attention_bias=False,
|
| 328 |
+
intermediate_size=256,
|
| 329 |
+
mlp_bias=False,
|
| 330 |
+
eps=1e-5,
|
| 331 |
+
)
|
| 332 |
+
model = Transformer(config)
|
| 333 |
+
model.eval()
|
| 334 |
+
|
| 335 |
+
batch, seq_len = 2, 8
|
| 336 |
+
input_ids = torch.randint(0, config.vocab_size, (batch, seq_len))
|
| 337 |
+
logits, loss = model(input_ids, targets=input_ids)
|
| 338 |
+
|
| 339 |
+
assert logits.shape == (batch, seq_len, config.vocab_size)
|
| 340 |
+
assert loss.dim() == 0
|
| 341 |
+
print("Smoke test passed: logits shape", logits.shape, "loss", loss.detach().item())
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
if __name__ == "__main__":
|
| 345 |
+
_smoke_test()
|
| 346 |
+
|