import gradio as gr import torch import json from tokenizers import Tokenizer from huggingface_hub import hf_hub_download from ModelArchitecture import Transformer, ModelConfig, generate from safetensors.torch import load_file # Load model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') REPO_ID = "VirtualInsight/Lumen" model_path = hf_hub_download(repo_id=REPO_ID, filename="model.safetensors") tokenizer_path = hf_hub_download(repo_id=REPO_ID, filename="tokenizer.json") config_path = hf_hub_download(repo_id=REPO_ID, filename="config.json") tokenizer = Tokenizer.from_file(tokenizer_path) with open(config_path) as f: config = ModelConfig(**json.load(f)) model = Transformer(config).to(device) model.load_state_dict(load_file(model_path, device=str(device)), strict=False) model.eval() @torch.no_grad() def generate_text(prompt, max_tokens=100, temperature=0.7, top_p=0.9): input_ids = torch.tensor(tokenizer.encode(prompt).ids).unsqueeze(0).to(device) output_ids = generate(model, input_ids, max_tokens, temperature, top_p=top_p, device=device) return tokenizer.decode(output_ids[0, input_ids.size(1):].cpu().tolist()) # Gradio Interface demo = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt", placeholder="Once upon a time...", lines=3), gr.Slider(10, 500, value=100, label="Max Tokens"), gr.Slider(0.1, 2.0, value=0.7, label="Temperature"), gr.Slider(0.1, 1.0, value=0.9, label="Top-p"), ], outputs=gr.Textbox(label="Generated Text", lines=10), title="LumenBase Language Model", description="Generate text using the Lumen language model", ) if __name__ == "__main__": demo.launch()