Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import PeftModel, PeftConfig | |
| base_model = "mistralai/Mistral-7B-v0.1" | |
| config = PeftConfig.from_pretrained("kiki7sun/mixtral-academic-finetune0119") | |
| model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", | |
| low_cpu_mem_usage=True, | |
| torch_dtype=torch.bfloat16) | |
| ft_model = PeftModel.from_pretrained(model, "kiki7sun/mixtral-academic-finetune0119") | |
| # ft_model = PeftModel.from_pretrained(model, 'kiki7sun/mixtral-academic-finetune-QLoRA-0121') | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| base_model, | |
| add_bos_token=True, | |
| trust_remote_code=True, | |
| ) | |
| ft_model.eval() | |
| def greet(your_prompt): | |
| model_input = tokenizer(your_prompt, return_tensors="pt").to("cpu") | |
| with torch.no_grad(): | |
| generation = ft_model.generate(**model_input, max_new_tokens = 150) | |
| result = tokenizer.decode(generation[0], skip_special_tokens=True) | |
| return result | |
| demo = gr.Interface(fn=greet, | |
| inputs="textbox", | |
| outputs="textbox", | |
| title="Academic Kitchen ChatChat", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |