Spaces:
Build error
Build error
π ENHANCED VERSION: Live object selection, schema reading, Faker test data generation, field selection
Browse files
app.py
CHANGED
|
@@ -3,21 +3,172 @@ import pandas as pd
|
|
| 3 |
from simple_salesforce import Salesforce
|
| 4 |
from datetime import datetime
|
| 5 |
import logging
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Set up logging
|
| 8 |
logging.basicConfig(level=logging.INFO)
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
-
# Global connection
|
| 12 |
sf_connection = None
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
def
|
| 15 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
global sf_connection
|
| 17 |
|
| 18 |
# Step 1: Connect to Salesforce
|
| 19 |
if not username or not password or not security_token:
|
| 20 |
-
return "β Please provide username, password, and security token"
|
| 21 |
|
| 22 |
try:
|
| 23 |
domain = 'test' if sandbox else None
|
|
@@ -30,19 +181,53 @@ def salesforce_data_loader(username, password, security_token, sandbox, operatio
|
|
| 30 |
|
| 31 |
connection_msg = f"β
Connected to Salesforce as {username}\n"
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
try:
|
| 36 |
-
# Read the file
|
| 37 |
if csv_file.name.endswith('.csv'):
|
| 38 |
df = pd.read_csv(csv_file.name)
|
| 39 |
elif csv_file.name.endswith(('.xlsx', '.xls')):
|
| 40 |
df = pd.read_excel(csv_file.name)
|
| 41 |
else:
|
| 42 |
-
return connection_msg + "β Please upload a CSV or Excel file"
|
| 43 |
|
| 44 |
if df.empty:
|
| 45 |
-
return connection_msg + "β The uploaded file is empty"
|
| 46 |
|
| 47 |
# Clean data
|
| 48 |
records = df.to_dict('records')
|
|
@@ -51,43 +236,46 @@ def salesforce_data_loader(username, password, security_token, sandbox, operatio
|
|
| 51 |
cleaned_record = {k: v for k, v in record.items() if pd.notna(v)}
|
| 52 |
cleaned_records.append(cleaned_record)
|
| 53 |
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
if any(col in columns for col in ['firstname', 'lastname', 'email']):
|
| 57 |
-
object_name = "Contact"
|
| 58 |
-
elif any(col in columns for col in ['company', 'name']):
|
| 59 |
-
object_name = "Account"
|
| 60 |
-
else:
|
| 61 |
-
object_name = "Lead"
|
| 62 |
-
|
| 63 |
-
# Perform operation using bulk API correctly
|
| 64 |
-
if operation == "insert":
|
| 65 |
-
result = sf_connection.bulk.__getattr__(object_name).insert(cleaned_records)
|
| 66 |
-
elif operation == "update":
|
| 67 |
-
result = sf_connection.bulk.__getattr__(object_name).update(cleaned_records)
|
| 68 |
-
else:
|
| 69 |
-
return connection_msg + "β Invalid operation. Use 'insert' or 'update'"
|
| 70 |
|
| 71 |
# Process results
|
| 72 |
success_count = sum(1 for r in result if r.get('success'))
|
| 73 |
error_count = len(result) - success_count
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
return connection_msg +
|
| 82 |
|
| 83 |
except Exception as e:
|
| 84 |
-
return connection_msg + f"β
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
try:
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
result = sf_connection.query_all(query)
|
| 92 |
records = result['records']
|
| 93 |
|
|
@@ -96,35 +284,40 @@ def salesforce_data_loader(username, password, security_token, sandbox, operatio
|
|
| 96 |
if 'attributes' in df.columns:
|
| 97 |
df = df.drop('attributes', axis=1)
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
export_msg = f"\nπ₯ Export Results:\n"
|
|
|
|
| 100 |
export_msg += f"Records exported: {len(records)}\n"
|
| 101 |
export_msg += f"Fields: {', '.join(df.columns)}\n"
|
| 102 |
-
export_msg += f"Sample data:\n{df.head().to_string()}"
|
| 103 |
|
| 104 |
-
return connection_msg + export_msg
|
| 105 |
else:
|
| 106 |
-
return connection_msg + "\nβ No records found
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
-
return connection_msg + f"\nβ Export error: {str(e)}"
|
| 110 |
|
| 111 |
else:
|
| 112 |
-
return connection_msg + "
|
| 113 |
|
| 114 |
except Exception as e:
|
| 115 |
error_msg = str(e)
|
| 116 |
if "INVALID_LOGIN" in error_msg:
|
| 117 |
-
return "β Invalid credentials. Please check your username, password, and security token."
|
| 118 |
elif "API_DISABLED_FOR_ORG" in error_msg:
|
| 119 |
-
return "β API access is disabled. Contact your Salesforce admin."
|
| 120 |
elif "LOGIN_MUST_USE_SECURITY_TOKEN" in error_msg:
|
| 121 |
-
return "β Security token required. Append it to your password."
|
| 122 |
else:
|
| 123 |
-
return f"β Connection failed: {error_msg}"
|
| 124 |
|
| 125 |
-
# Create the interface
|
| 126 |
demo = gr.Interface(
|
| 127 |
-
fn=
|
| 128 |
inputs=[
|
| 129 |
gr.Textbox(label="Username", placeholder="[email protected]"),
|
| 130 |
gr.Textbox(label="Password", type="password"),
|
|
@@ -132,24 +325,47 @@ demo = gr.Interface(
|
|
| 132 |
gr.Checkbox(label="Sandbox Environment"),
|
| 133 |
gr.Dropdown(
|
| 134 |
label="Operation",
|
| 135 |
-
choices=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
value="connect_only"
|
| 137 |
),
|
| 138 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
],
|
| 140 |
-
|
| 141 |
-
title="π Salesforce Data Loader",
|
| 142 |
description="""
|
| 143 |
-
**
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
""",
|
| 151 |
examples=[
|
| 152 |
-
["[email protected]", "password123", "token123", False, "connect_only", None],
|
| 153 |
]
|
| 154 |
)
|
| 155 |
|
|
|
|
| 3 |
from simple_salesforce import Salesforce
|
| 4 |
from datetime import datetime
|
| 5 |
import logging
|
| 6 |
+
import json
|
| 7 |
+
from faker import Faker
|
| 8 |
+
import random
|
| 9 |
|
| 10 |
# Set up logging
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
+
# Global connection and state
|
| 15 |
sf_connection = None
|
| 16 |
+
available_objects = []
|
| 17 |
+
object_schemas = {}
|
| 18 |
+
fake = Faker()
|
| 19 |
|
| 20 |
+
def get_salesforce_objects():
|
| 21 |
+
"""Get list of available Salesforce objects"""
|
| 22 |
+
global sf_connection, available_objects
|
| 23 |
+
|
| 24 |
+
if not sf_connection:
|
| 25 |
+
return []
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
# Get commonly used objects and test their accessibility
|
| 29 |
+
common_objects = [
|
| 30 |
+
'Account', 'Contact', 'Lead', 'Opportunity', 'Case',
|
| 31 |
+
'Campaign', 'User', 'Product2', 'Task', 'Event'
|
| 32 |
+
]
|
| 33 |
+
available_objects = []
|
| 34 |
+
|
| 35 |
+
for obj_name in common_objects:
|
| 36 |
+
try:
|
| 37 |
+
obj = getattr(sf_connection, obj_name)
|
| 38 |
+
obj.describe()
|
| 39 |
+
available_objects.append(obj_name)
|
| 40 |
+
except:
|
| 41 |
+
continue
|
| 42 |
+
|
| 43 |
+
return available_objects
|
| 44 |
+
except Exception as e:
|
| 45 |
+
logger.error(f"Error getting objects: {str(e)}")
|
| 46 |
+
return ['Account', 'Contact', 'Lead']
|
| 47 |
+
|
| 48 |
+
def get_object_schema(object_name):
|
| 49 |
+
"""Get schema for a specific Salesforce object"""
|
| 50 |
+
global sf_connection, object_schemas
|
| 51 |
+
|
| 52 |
+
if not sf_connection or not object_name:
|
| 53 |
+
return {}
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
if object_name not in object_schemas:
|
| 57 |
+
obj = getattr(sf_connection, object_name)
|
| 58 |
+
metadata = obj.describe()
|
| 59 |
+
|
| 60 |
+
schema = {
|
| 61 |
+
'name': object_name,
|
| 62 |
+
'label': metadata.get('label', object_name),
|
| 63 |
+
'fields': []
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
for field in metadata['fields']:
|
| 67 |
+
if field['createable'] or field['updateable']:
|
| 68 |
+
field_info = {
|
| 69 |
+
'name': field['name'],
|
| 70 |
+
'label': field['label'],
|
| 71 |
+
'type': field['type'],
|
| 72 |
+
'required': not field['nillable'] and not field['defaultedOnCreate'],
|
| 73 |
+
'length': field.get('length', 0),
|
| 74 |
+
'picklistValues': [pv['value'] for pv in field.get('picklistValues', [])]
|
| 75 |
+
}
|
| 76 |
+
schema['fields'].append(field_info)
|
| 77 |
+
|
| 78 |
+
object_schemas[object_name] = schema
|
| 79 |
+
|
| 80 |
+
return object_schemas[object_name]
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logger.error(f"Error getting schema for {object_name}: {str(e)}")
|
| 83 |
+
return {}
|
| 84 |
+
|
| 85 |
+
def generate_test_data(object_name, fields, num_records=100):
|
| 86 |
+
"""Generate test data using Faker for specified object and fields"""
|
| 87 |
+
try:
|
| 88 |
+
schema = get_object_schema(object_name)
|
| 89 |
+
if not schema:
|
| 90 |
+
return None, "β Could not get object schema"
|
| 91 |
+
|
| 92 |
+
records = []
|
| 93 |
+
|
| 94 |
+
for _ in range(num_records):
|
| 95 |
+
record = {}
|
| 96 |
+
|
| 97 |
+
for field_name in fields:
|
| 98 |
+
field_info = next((f for f in schema['fields'] if f['name'] == field_name), None)
|
| 99 |
+
if not field_info:
|
| 100 |
+
continue
|
| 101 |
+
|
| 102 |
+
field_type = field_info['type']
|
| 103 |
+
|
| 104 |
+
# Generate data based on field type and name
|
| 105 |
+
if field_name.lower() in ['firstname', 'first_name']:
|
| 106 |
+
record[field_name] = fake.first_name()
|
| 107 |
+
elif field_name.lower() in ['lastname', 'last_name']:
|
| 108 |
+
record[field_name] = fake.last_name()
|
| 109 |
+
elif field_name.lower() in ['name'] and object_name == 'Account':
|
| 110 |
+
record[field_name] = fake.company()
|
| 111 |
+
elif field_name.lower() in ['email']:
|
| 112 |
+
record[field_name] = fake.email()
|
| 113 |
+
elif field_name.lower() in ['phone']:
|
| 114 |
+
record[field_name] = fake.phone_number()
|
| 115 |
+
elif field_name.lower() in ['website']:
|
| 116 |
+
record[field_name] = fake.url()
|
| 117 |
+
elif field_name.lower() in ['street', 'mailingstreet', 'billingstreet']:
|
| 118 |
+
record[field_name] = fake.street_address()
|
| 119 |
+
elif field_name.lower() in ['city', 'mailingcity', 'billingcity']:
|
| 120 |
+
record[field_name] = fake.city()
|
| 121 |
+
elif field_name.lower() in ['state', 'mailingstate', 'billingstate']:
|
| 122 |
+
record[field_name] = fake.state_abbr()
|
| 123 |
+
elif field_name.lower() in ['postalcode', 'mailingpostalcode', 'billingpostalcode']:
|
| 124 |
+
record[field_name] = fake.zipcode()
|
| 125 |
+
elif field_name.lower() in ['country', 'mailingcountry', 'billingcountry']:
|
| 126 |
+
record[field_name] = 'US'
|
| 127 |
+
elif field_type == 'picklist' and field_info['picklistValues']:
|
| 128 |
+
record[field_name] = random.choice(field_info['picklistValues'])
|
| 129 |
+
elif field_type == 'boolean':
|
| 130 |
+
record[field_name] = random.choice([True, False])
|
| 131 |
+
elif field_type in ['int', 'double', 'currency']:
|
| 132 |
+
if 'annual' in field_name.lower() or 'revenue' in field_name.lower():
|
| 133 |
+
record[field_name] = random.randint(100000, 10000000)
|
| 134 |
+
else:
|
| 135 |
+
record[field_name] = random.randint(1, 1000)
|
| 136 |
+
elif field_type == 'date':
|
| 137 |
+
record[field_name] = fake.date_between(start_date='-1y', end_date='today').isoformat()
|
| 138 |
+
elif field_type == 'datetime':
|
| 139 |
+
record[field_name] = fake.date_time_between(start_date='-1y', end_date='now').isoformat()
|
| 140 |
+
elif field_type in ['string', 'textarea']:
|
| 141 |
+
if field_info['length'] > 100:
|
| 142 |
+
record[field_name] = fake.text(max_nb_chars=min(field_info['length'], 200))
|
| 143 |
+
else:
|
| 144 |
+
record[field_name] = fake.sentence(nb_words=3)[:field_info['length']]
|
| 145 |
+
else:
|
| 146 |
+
# Default string value
|
| 147 |
+
record[field_name] = f"Test {field_name}"
|
| 148 |
+
|
| 149 |
+
records.append(record)
|
| 150 |
+
|
| 151 |
+
# Create DataFrame
|
| 152 |
+
df = pd.DataFrame(records)
|
| 153 |
+
|
| 154 |
+
# Save to CSV
|
| 155 |
+
filename = f"test_data_{object_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
| 156 |
+
df.to_csv(filename, index=False)
|
| 157 |
+
|
| 158 |
+
return filename, f"β
Generated {num_records} test records for {object_name}\nFields: {', '.join(fields)}\nFile: {filename}"
|
| 159 |
+
|
| 160 |
+
except Exception as e:
|
| 161 |
+
logger.error(f"Error generating test data: {str(e)}")
|
| 162 |
+
return None, f"β Error generating test data: {str(e)}"
|
| 163 |
+
|
| 164 |
+
def enhanced_salesforce_operation(username, password, security_token, sandbox, operation,
|
| 165 |
+
object_name, selected_fields, csv_file, num_records):
|
| 166 |
+
"""Enhanced Salesforce operations with full functionality"""
|
| 167 |
global sf_connection
|
| 168 |
|
| 169 |
# Step 1: Connect to Salesforce
|
| 170 |
if not username or not password or not security_token:
|
| 171 |
+
return "β Please provide username, password, and security token", None, "[]", "[]"
|
| 172 |
|
| 173 |
try:
|
| 174 |
domain = 'test' if sandbox else None
|
|
|
|
| 181 |
|
| 182 |
connection_msg = f"β
Connected to Salesforce as {username}\n"
|
| 183 |
|
| 184 |
+
# Get available objects
|
| 185 |
+
objects = get_salesforce_objects()
|
| 186 |
+
objects_json = json.dumps(objects)
|
| 187 |
+
|
| 188 |
+
# Step 2: Handle different operations
|
| 189 |
+
if operation == "connect_only":
|
| 190 |
+
return connection_msg + f"Available objects: {', '.join(objects)}", None, objects_json, "[]"
|
| 191 |
+
|
| 192 |
+
elif operation == "get_schema":
|
| 193 |
+
if not object_name:
|
| 194 |
+
return connection_msg + "β Please select an object", None, objects_json, "[]"
|
| 195 |
+
|
| 196 |
+
schema = get_object_schema(object_name)
|
| 197 |
+
fields = [f"{f['name']} ({f['type']})" for f in schema.get('fields', [])]
|
| 198 |
+
fields_json = json.dumps([f['name'] for f in schema.get('fields', [])])
|
| 199 |
+
|
| 200 |
+
return (connection_msg + f"π Schema for {object_name}:\n" +
|
| 201 |
+
f"Fields: {len(fields)}\n" + "\n".join(fields[:20]) +
|
| 202 |
+
(f"\n... and {len(fields)-20} more fields" if len(fields) > 20 else "")), None, objects_json, fields_json
|
| 203 |
+
|
| 204 |
+
elif operation == "generate_data":
|
| 205 |
+
if not object_name or not selected_fields:
|
| 206 |
+
return connection_msg + "β Please select object and fields", None, objects_json, "[]"
|
| 207 |
+
|
| 208 |
+
fields_list = selected_fields.split(',') if isinstance(selected_fields, str) else selected_fields
|
| 209 |
+
filename, result = generate_test_data(object_name, fields_list, num_records)
|
| 210 |
+
|
| 211 |
+
return connection_msg + result, filename, objects_json, "[]"
|
| 212 |
+
|
| 213 |
+
elif operation == "import_data":
|
| 214 |
+
if not csv_file:
|
| 215 |
+
return connection_msg + "β Please upload a CSV file", None, objects_json, "[]"
|
| 216 |
+
|
| 217 |
+
if not object_name:
|
| 218 |
+
return connection_msg + "β Please select target object", None, objects_json, "[]"
|
| 219 |
+
|
| 220 |
+
# Read and process file
|
| 221 |
try:
|
|
|
|
| 222 |
if csv_file.name.endswith('.csv'):
|
| 223 |
df = pd.read_csv(csv_file.name)
|
| 224 |
elif csv_file.name.endswith(('.xlsx', '.xls')):
|
| 225 |
df = pd.read_excel(csv_file.name)
|
| 226 |
else:
|
| 227 |
+
return connection_msg + "β Please upload a CSV or Excel file", None, objects_json, "[]"
|
| 228 |
|
| 229 |
if df.empty:
|
| 230 |
+
return connection_msg + "β The uploaded file is empty", None, objects_json, "[]"
|
| 231 |
|
| 232 |
# Clean data
|
| 233 |
records = df.to_dict('records')
|
|
|
|
| 236 |
cleaned_record = {k: v for k, v in record.items() if pd.notna(v)}
|
| 237 |
cleaned_records.append(cleaned_record)
|
| 238 |
|
| 239 |
+
# Import using bulk API
|
| 240 |
+
result = sf_connection.bulk.__getattr__(object_name).insert(cleaned_records)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
# Process results
|
| 243 |
success_count = sum(1 for r in result if r.get('success'))
|
| 244 |
error_count = len(result) - success_count
|
| 245 |
|
| 246 |
+
import_msg = f"\nπ€ Import Results:\n"
|
| 247 |
+
import_msg += f"Object: {object_name}\n"
|
| 248 |
+
import_msg += f"Total records: {len(records)}\n"
|
| 249 |
+
import_msg += f"β
Successful: {success_count}\n"
|
| 250 |
+
import_msg += f"β Failed: {error_count}\n"
|
| 251 |
+
|
| 252 |
+
if error_count > 0:
|
| 253 |
+
errors = [r.get('errors', []) for r in result if not r.get('success')]
|
| 254 |
+
import_msg += f"\nFirst few errors: {str(errors[:3])}"
|
| 255 |
|
| 256 |
+
return connection_msg + import_msg, None, objects_json, "[]"
|
| 257 |
|
| 258 |
except Exception as e:
|
| 259 |
+
return connection_msg + f"β Import error: {str(e)}", None, objects_json, "[]"
|
| 260 |
|
| 261 |
+
elif operation == "export_data":
|
| 262 |
+
if not object_name:
|
| 263 |
+
return connection_msg + "β Please select an object", None, objects_json, "[]"
|
| 264 |
+
|
| 265 |
try:
|
| 266 |
+
schema = get_object_schema(object_name)
|
| 267 |
+
|
| 268 |
+
# Use selected fields or default fields
|
| 269 |
+
if selected_fields:
|
| 270 |
+
fields_list = selected_fields.split(',') if isinstance(selected_fields, str) else selected_fields
|
| 271 |
+
fields_list = [f.strip() for f in fields_list]
|
| 272 |
+
else:
|
| 273 |
+
# Use first 10 fields as default
|
| 274 |
+
fields_list = [f['name'] for f in schema.get('fields', [])[:10]]
|
| 275 |
+
|
| 276 |
+
fields_str = ', '.join(fields_list)
|
| 277 |
+
query = f"SELECT {fields_str} FROM {object_name} LIMIT 100"
|
| 278 |
+
|
| 279 |
result = sf_connection.query_all(query)
|
| 280 |
records = result['records']
|
| 281 |
|
|
|
|
| 284 |
if 'attributes' in df.columns:
|
| 285 |
df = df.drop('attributes', axis=1)
|
| 286 |
|
| 287 |
+
# Save export file
|
| 288 |
+
export_file = f"export_{object_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
| 289 |
+
df.to_csv(export_file, index=False)
|
| 290 |
+
|
| 291 |
export_msg = f"\nπ₯ Export Results:\n"
|
| 292 |
+
export_msg += f"Object: {object_name}\n"
|
| 293 |
export_msg += f"Records exported: {len(records)}\n"
|
| 294 |
export_msg += f"Fields: {', '.join(df.columns)}\n"
|
| 295 |
+
export_msg += f"Sample data:\n{df.head(3).to_string()}"
|
| 296 |
|
| 297 |
+
return connection_msg + export_msg, export_file, objects_json, "[]"
|
| 298 |
else:
|
| 299 |
+
return connection_msg + f"\nβ No {object_name} records found", None, objects_json, "[]"
|
| 300 |
|
| 301 |
except Exception as e:
|
| 302 |
+
return connection_msg + f"\nβ Export error: {str(e)}", None, objects_json, "[]"
|
| 303 |
|
| 304 |
else:
|
| 305 |
+
return connection_msg + "β Invalid operation", None, objects_json, "[]"
|
| 306 |
|
| 307 |
except Exception as e:
|
| 308 |
error_msg = str(e)
|
| 309 |
if "INVALID_LOGIN" in error_msg:
|
| 310 |
+
return "β Invalid credentials. Please check your username, password, and security token.", None, "[]", "[]"
|
| 311 |
elif "API_DISABLED_FOR_ORG" in error_msg:
|
| 312 |
+
return "β API access is disabled. Contact your Salesforce admin.", None, "[]", "[]"
|
| 313 |
elif "LOGIN_MUST_USE_SECURITY_TOKEN" in error_msg:
|
| 314 |
+
return "β Security token required. Append it to your password.", None, "[]", "[]"
|
| 315 |
else:
|
| 316 |
+
return f"β Connection failed: {error_msg}", None, "[]", "[]"
|
| 317 |
|
| 318 |
+
# Create the enhanced interface
|
| 319 |
demo = gr.Interface(
|
| 320 |
+
fn=enhanced_salesforce_operation,
|
| 321 |
inputs=[
|
| 322 |
gr.Textbox(label="Username", placeholder="[email protected]"),
|
| 323 |
gr.Textbox(label="Password", type="password"),
|
|
|
|
| 325 |
gr.Checkbox(label="Sandbox Environment"),
|
| 326 |
gr.Dropdown(
|
| 327 |
label="Operation",
|
| 328 |
+
choices=[
|
| 329 |
+
"connect_only",
|
| 330 |
+
"get_schema",
|
| 331 |
+
"generate_data",
|
| 332 |
+
"import_data",
|
| 333 |
+
"export_data"
|
| 334 |
+
],
|
| 335 |
value="connect_only"
|
| 336 |
),
|
| 337 |
+
gr.Dropdown(label="Salesforce Object", choices=[], allow_custom_value=True),
|
| 338 |
+
gr.Textbox(label="Selected Fields (comma-separated)", placeholder="Name,Email,Phone"),
|
| 339 |
+
gr.File(label="CSV/Excel File (for import)", file_types=[".csv", ".xlsx", ".xls"]),
|
| 340 |
+
gr.Slider(label="Number of Test Records", minimum=10, maximum=1000, value=100, step=10)
|
| 341 |
+
],
|
| 342 |
+
outputs=[
|
| 343 |
+
gr.Textbox(label="Results", lines=15),
|
| 344 |
+
gr.File(label="Download File"),
|
| 345 |
+
gr.Textbox(label="Available Objects (JSON)", visible=False),
|
| 346 |
+
gr.Textbox(label="Available Fields (JSON)", visible=False)
|
| 347 |
],
|
| 348 |
+
title="π Enhanced Salesforce Data Loader",
|
|
|
|
| 349 |
description="""
|
| 350 |
+
**Advanced Salesforce Data Management Tool**
|
| 351 |
|
| 352 |
+
**Workflow:**
|
| 353 |
+
1. **Connect**: Enter credentials, select 'connect_only' to see available objects
|
| 354 |
+
2. **Get Schema**: Select object, choose 'get_schema' to see fields
|
| 355 |
+
3. **Generate Data**: Select fields, choose 'generate_data' to create test data with Faker
|
| 356 |
+
4. **Import**: Upload CSV/Excel, select target object, choose 'import_data'
|
| 357 |
+
5. **Export**: Select object and fields, choose 'export_data'
|
| 358 |
|
| 359 |
+
**Features:**
|
| 360 |
+
- β
Live object detection from your Salesforce org
|
| 361 |
+
- β
Dynamic schema reading with field types
|
| 362 |
+
- β
Intelligent test data generation using Faker
|
| 363 |
+
- β
Field mapping and validation
|
| 364 |
+
- β
Bulk operations for performance
|
| 365 |
+
- β
Relationship data support (Account + Contact)
|
| 366 |
""",
|
| 367 |
examples=[
|
| 368 |
+
["[email protected]", "password123", "token123", False, "connect_only", "", "", None, 100],
|
| 369 |
]
|
| 370 |
)
|
| 371 |
|