Create backup5.app.py
Browse files- backup5.app.py +263 -0
backup5.app.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import glob
|
| 4 |
+
import time
|
| 5 |
+
import streamlit as st
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer, AutoModel, TrOCRProcessor, VisionEncoderDecoderModel
|
| 9 |
+
from diffusers import StableDiffusionPipeline
|
| 10 |
+
import cv2
|
| 11 |
+
import numpy as np
|
| 12 |
+
import logging
|
| 13 |
+
import asyncio
|
| 14 |
+
import aiofiles
|
| 15 |
+
from io import BytesIO
|
| 16 |
+
|
| 17 |
+
# Logging setup
|
| 18 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
log_records = []
|
| 21 |
+
|
| 22 |
+
class LogCaptureHandler(logging.Handler):
|
| 23 |
+
def emit(self, record):
|
| 24 |
+
log_records.append(record)
|
| 25 |
+
|
| 26 |
+
logger.addHandler(LogCaptureHandler())
|
| 27 |
+
|
| 28 |
+
# Page Configuration
|
| 29 |
+
st.set_page_config(
|
| 30 |
+
page_title="AI Vision Titans 🚀",
|
| 31 |
+
page_icon="🤖",
|
| 32 |
+
layout="wide",
|
| 33 |
+
initial_sidebar_state="expanded",
|
| 34 |
+
menu_items={'About': "AI Vision Titans: OCR, Image Gen, Line Drawings on CPU! 🌌"}
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Initialize st.session_state
|
| 38 |
+
if 'captured_images' not in st.session_state:
|
| 39 |
+
st.session_state['captured_images'] = []
|
| 40 |
+
if 'processing' not in st.session_state:
|
| 41 |
+
st.session_state['processing'] = {}
|
| 42 |
+
|
| 43 |
+
# Utility Functions
|
| 44 |
+
def generate_filename(sequence, ext="png"):
|
| 45 |
+
from datetime import datetime
|
| 46 |
+
import pytz
|
| 47 |
+
central = pytz.timezone('US/Central')
|
| 48 |
+
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
|
| 49 |
+
return f"{sequence}{timestamp}.{ext}"
|
| 50 |
+
|
| 51 |
+
def get_gallery_files(file_types):
|
| 52 |
+
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
|
| 53 |
+
|
| 54 |
+
def update_gallery():
|
| 55 |
+
media_files = get_gallery_files(["png", "txt"])
|
| 56 |
+
if media_files:
|
| 57 |
+
cols = st.sidebar.columns(2)
|
| 58 |
+
for idx, file in enumerate(media_files[:gallery_size * 2]):
|
| 59 |
+
with cols[idx % 2]:
|
| 60 |
+
if file.endswith(".png"):
|
| 61 |
+
st.image(Image.open(file), caption=file, use_container_width=True)
|
| 62 |
+
elif file.endswith(".txt"):
|
| 63 |
+
with open(file, "r") as f:
|
| 64 |
+
st.text(f.read()[:50] + "..." if len(f.read()) > 50 else f.read(), help=file)
|
| 65 |
+
|
| 66 |
+
# Model Loaders (Smaller, CPU-focused)
|
| 67 |
+
def load_ocr_qwen2vl():
|
| 68 |
+
model_id = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 69 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 70 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
| 71 |
+
return processor, model
|
| 72 |
+
|
| 73 |
+
def load_ocr_trocr():
|
| 74 |
+
model_id = "microsoft/trocr-small-handwritten" # ~250 MB
|
| 75 |
+
processor = TrOCRProcessor.from_pretrained(model_id)
|
| 76 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu").eval()
|
| 77 |
+
return processor, model
|
| 78 |
+
|
| 79 |
+
def load_image_gen():
|
| 80 |
+
model_id = "OFA-Sys/small-stable-diffusion-v0" # ~300 MB
|
| 81 |
+
pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu")
|
| 82 |
+
return pipeline
|
| 83 |
+
|
| 84 |
+
def load_line_drawer():
|
| 85 |
+
# Simplified OpenCV-based edge detection (CPU-friendly substitute for Torch Space UNet)
|
| 86 |
+
def edge_detection(image):
|
| 87 |
+
img_np = np.array(image.convert("RGB"))
|
| 88 |
+
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
| 89 |
+
edges = cv2.Canny(gray, 100, 200)
|
| 90 |
+
return Image.fromarray(edges)
|
| 91 |
+
return edge_detection
|
| 92 |
+
|
| 93 |
+
# Async Processing Functions
|
| 94 |
+
async def process_ocr(image, prompt, model_name, output_file):
|
| 95 |
+
start_time = time.time()
|
| 96 |
+
status = st.empty()
|
| 97 |
+
status.text(f"Processing {model_name} OCR... (0s)")
|
| 98 |
+
if model_name == "Qwen2-VL-OCR-2B":
|
| 99 |
+
processor, model = load_ocr_qwen2vl()
|
| 100 |
+
# Corrected input format: apply chat template
|
| 101 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
|
| 102 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 103 |
+
inputs = processor(text=[text], images=[image], return_tensors="pt", padding=True).to("cpu")
|
| 104 |
+
outputs = model.generate(**inputs, max_new_tokens=1024)
|
| 105 |
+
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 106 |
+
else: # TrOCR
|
| 107 |
+
processor, model = load_ocr_trocr()
|
| 108 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to("cpu")
|
| 109 |
+
outputs = model.generate(pixel_values)
|
| 110 |
+
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 111 |
+
elapsed = int(time.time() - start_time)
|
| 112 |
+
status.text(f"{model_name} OCR completed in {elapsed}s!")
|
| 113 |
+
async with aiofiles.open(output_file, "w") as f:
|
| 114 |
+
await f.write(result)
|
| 115 |
+
st.session_state['captured_images'].append(output_file)
|
| 116 |
+
return result
|
| 117 |
+
|
| 118 |
+
async def process_image_gen(prompt, output_file):
|
| 119 |
+
start_time = time.time()
|
| 120 |
+
status = st.empty()
|
| 121 |
+
status.text("Processing Image Gen... (0s)")
|
| 122 |
+
pipeline = load_image_gen()
|
| 123 |
+
gen_image = pipeline(prompt, num_inference_steps=20).images[0] # Reduced steps for speed
|
| 124 |
+
elapsed = int(time.time() - start_time)
|
| 125 |
+
status.text(f"Image Gen completed in {elapsed}s!")
|
| 126 |
+
gen_image.save(output_file)
|
| 127 |
+
st.session_state['captured_images'].append(output_file)
|
| 128 |
+
return gen_image
|
| 129 |
+
|
| 130 |
+
async def process_line_drawing(image, output_file):
|
| 131 |
+
start_time = time.time()
|
| 132 |
+
status = st.empty()
|
| 133 |
+
status.text("Processing Line Drawing... (0s)")
|
| 134 |
+
edge_fn = load_line_drawer()
|
| 135 |
+
line_drawing = edge_fn(image)
|
| 136 |
+
elapsed = int(time.time() - start_time)
|
| 137 |
+
status.text(f"Line Drawing completed in {elapsed}s!")
|
| 138 |
+
line_drawing.save(output_file)
|
| 139 |
+
st.session_state['captured_images'].append(output_file)
|
| 140 |
+
return line_drawing
|
| 141 |
+
|
| 142 |
+
# Main App
|
| 143 |
+
st.title("AI Vision Titans 🚀 (OCR, Gen, Drawings!)")
|
| 144 |
+
|
| 145 |
+
# Sidebar Gallery
|
| 146 |
+
st.sidebar.header("Captured Images 🎨")
|
| 147 |
+
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
|
| 148 |
+
update_gallery()
|
| 149 |
+
|
| 150 |
+
st.sidebar.subheader("Action Logs 📜")
|
| 151 |
+
log_container = st.sidebar.empty()
|
| 152 |
+
with log_container:
|
| 153 |
+
for record in log_records:
|
| 154 |
+
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
| 155 |
+
|
| 156 |
+
# Tabs
|
| 157 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Camera Snap 📷", "Test OCR 🔍", "Test Image Gen 🎨", "Test Line Drawings ✏️"])
|
| 158 |
+
|
| 159 |
+
with tab1:
|
| 160 |
+
st.header("Camera Snap 📷")
|
| 161 |
+
st.subheader("Single Capture")
|
| 162 |
+
cols = st.columns(2)
|
| 163 |
+
with cols[0]:
|
| 164 |
+
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
| 165 |
+
if cam0_img:
|
| 166 |
+
filename = generate_filename(0)
|
| 167 |
+
if filename not in st.session_state['captured_images']:
|
| 168 |
+
with open(filename, "wb") as f:
|
| 169 |
+
f.write(cam0_img.getvalue())
|
| 170 |
+
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
| 171 |
+
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
| 172 |
+
st.session_state['captured_images'].append(filename)
|
| 173 |
+
update_gallery()
|
| 174 |
+
with cols[1]:
|
| 175 |
+
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
| 176 |
+
if cam1_img:
|
| 177 |
+
filename = generate_filename(1)
|
| 178 |
+
if filename not in st.session_state['captured_images']:
|
| 179 |
+
with open(filename, "wb") as f:
|
| 180 |
+
f.write(cam1_img.getvalue())
|
| 181 |
+
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
| 182 |
+
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
| 183 |
+
st.session_state['captured_images'].append(filename)
|
| 184 |
+
update_gallery()
|
| 185 |
+
|
| 186 |
+
st.subheader("Burst Capture")
|
| 187 |
+
slice_count = st.number_input("Number of Frames", min_value=1, max_value=20, value=10, key="burst_count")
|
| 188 |
+
if st.button("Start Burst Capture 📸"):
|
| 189 |
+
st.session_state['burst_frames'] = []
|
| 190 |
+
placeholder = st.empty()
|
| 191 |
+
for i in range(slice_count):
|
| 192 |
+
with placeholder.container():
|
| 193 |
+
st.write(f"Capturing frame {i+1}/{slice_count}...")
|
| 194 |
+
img = st.camera_input(f"Frame {i}", key=f"burst_{i}_{time.time()}")
|
| 195 |
+
if img:
|
| 196 |
+
filename = generate_filename(f"burst_{i}")
|
| 197 |
+
if filename not in st.session_state['captured_images']:
|
| 198 |
+
with open(filename, "wb") as f:
|
| 199 |
+
f.write(img.getvalue())
|
| 200 |
+
st.session_state['burst_frames'].append(filename)
|
| 201 |
+
logger.info(f"Saved burst frame {i}: {filename}")
|
| 202 |
+
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
| 203 |
+
time.sleep(0.5) # Small delay for visibility
|
| 204 |
+
st.session_state['captured_images'].extend([f for f in st.session_state['burst_frames'] if f not in st.session_state['captured_images']])
|
| 205 |
+
update_gallery()
|
| 206 |
+
placeholder.success(f"Captured {len(st.session_state['burst_frames'])} frames!")
|
| 207 |
+
|
| 208 |
+
with tab2:
|
| 209 |
+
st.header("Test OCR 🔍")
|
| 210 |
+
captured_images = get_gallery_files(["png"])
|
| 211 |
+
if captured_images:
|
| 212 |
+
selected_image = st.selectbox("Select Image", captured_images, key="ocr_select")
|
| 213 |
+
image = Image.open(selected_image)
|
| 214 |
+
st.image(image, caption="Input Image", use_container_width=True)
|
| 215 |
+
ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "TrOCR-Small"], key="ocr_model_select")
|
| 216 |
+
prompt = st.text_area("Prompt", "Extract text from the image", key="ocr_prompt")
|
| 217 |
+
if st.button("Run OCR 🚀", key="ocr_run"):
|
| 218 |
+
output_file = generate_filename("ocr_output", "txt")
|
| 219 |
+
st.session_state['processing']['ocr'] = True
|
| 220 |
+
result = asyncio.run(process_ocr(image, prompt, ocr_model, output_file))
|
| 221 |
+
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
| 222 |
+
st.success(f"OCR output saved to {output_file}")
|
| 223 |
+
st.session_state['processing']['ocr'] = False
|
| 224 |
+
else:
|
| 225 |
+
st.warning("No images captured yet. Use Camera Snap first!")
|
| 226 |
+
|
| 227 |
+
with tab3:
|
| 228 |
+
st.header("Test Image Gen 🎨")
|
| 229 |
+
captured_images = get_gallery_files(["png"])
|
| 230 |
+
if captured_images:
|
| 231 |
+
selected_image = st.selectbox("Select Image", captured_images, key="gen_select")
|
| 232 |
+
image = Image.open(selected_image)
|
| 233 |
+
st.image(image, caption="Reference Image", use_container_width=True)
|
| 234 |
+
prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
|
| 235 |
+
if st.button("Run Image Gen 🚀", key="gen_run"):
|
| 236 |
+
output_file = generate_filename("gen_output", "png")
|
| 237 |
+
st.session_state['processing']['gen'] = True
|
| 238 |
+
result = asyncio.run(process_image_gen(prompt, output_file))
|
| 239 |
+
st.image(result, caption="Generated Image", use_container_width=True)
|
| 240 |
+
st.success(f"Image saved to {output_file}")
|
| 241 |
+
st.session_state['processing']['gen'] = False
|
| 242 |
+
else:
|
| 243 |
+
st.warning("No images captured yet. Use Camera Snap first!")
|
| 244 |
+
|
| 245 |
+
with tab4:
|
| 246 |
+
st.header("Test Line Drawings ✏️")
|
| 247 |
+
captured_images = get_gallery_files(["png"])
|
| 248 |
+
if captured_images:
|
| 249 |
+
selected_image = st.selectbox("Select Image", captured_images, key="line_select")
|
| 250 |
+
image = Image.open(selected_image)
|
| 251 |
+
st.image(image, caption="Input Image", use_container_width=True)
|
| 252 |
+
if st.button("Run Line Drawing 🚀", key="line_run"):
|
| 253 |
+
output_file = generate_filename("line_output", "png")
|
| 254 |
+
st.session_state['processing']['line'] = True
|
| 255 |
+
result = asyncio.run(process_line_drawing(image, output_file))
|
| 256 |
+
st.image(result, caption="Line Drawing", use_container_width=True)
|
| 257 |
+
st.success(f"Line drawing saved to {output_file}")
|
| 258 |
+
st.session_state['processing']['line'] = False
|
| 259 |
+
else:
|
| 260 |
+
st.warning("No images captured yet. Use Camera Snap first!")
|
| 261 |
+
|
| 262 |
+
# Initial Gallery Update
|
| 263 |
+
update_gallery()
|