Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import glob
|
| 5 |
+
import base64
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
+
from torch.utils.data import Dataset, DataLoader
|
| 11 |
+
import csv
|
| 12 |
+
import time
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
from typing import Optional, Tuple
|
| 15 |
+
import zipfile
|
| 16 |
+
import math
|
| 17 |
+
from PIL import Image
|
| 18 |
+
import random
|
| 19 |
+
import logging
|
| 20 |
+
import numpy as np
|
| 21 |
+
|
| 22 |
+
# Logging setup
|
| 23 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# Page Configuration
|
| 27 |
+
st.set_page_config(
|
| 28 |
+
page_title="SFT Tiny Titans 🚀",
|
| 29 |
+
page_icon="🤖",
|
| 30 |
+
layout="wide",
|
| 31 |
+
initial_sidebar_state="expanded",
|
| 32 |
+
menu_items={
|
| 33 |
+
'Get Help': 'https://huggingface.co/awacke1',
|
| 34 |
+
'Report a bug': 'https://huggingface.co/spaces/awacke1',
|
| 35 |
+
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌"
|
| 36 |
+
}
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Model Configuration Classes
|
| 40 |
+
@dataclass
|
| 41 |
+
class ModelConfig:
|
| 42 |
+
name: str
|
| 43 |
+
base_model: str
|
| 44 |
+
size: str
|
| 45 |
+
domain: Optional[str] = None
|
| 46 |
+
model_type: str = "causal_lm"
|
| 47 |
+
@property
|
| 48 |
+
def model_path(self):
|
| 49 |
+
return f"models/{self.name}"
|
| 50 |
+
|
| 51 |
+
@dataclass
|
| 52 |
+
class DiffusionConfig:
|
| 53 |
+
name: str
|
| 54 |
+
base_model: str
|
| 55 |
+
size: str
|
| 56 |
+
@property
|
| 57 |
+
def model_path(self):
|
| 58 |
+
return f"diffusion_models/{self.name}"
|
| 59 |
+
|
| 60 |
+
# Datasets
|
| 61 |
+
class SFTDataset(Dataset):
|
| 62 |
+
def __init__(self, data, tokenizer, max_length=128):
|
| 63 |
+
self.data = data
|
| 64 |
+
self.tokenizer = tokenizer
|
| 65 |
+
self.max_length = max_length
|
| 66 |
+
def __len__(self):
|
| 67 |
+
return len(self.data)
|
| 68 |
+
def __getitem__(self, idx):
|
| 69 |
+
prompt = self.data[idx]["prompt"]
|
| 70 |
+
response = self.data[idx]["response"]
|
| 71 |
+
full_text = f"{prompt} {response}"
|
| 72 |
+
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
|
| 73 |
+
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
|
| 74 |
+
input_ids = full_encoding["input_ids"].squeeze()
|
| 75 |
+
attention_mask = full_encoding["attention_mask"].squeeze()
|
| 76 |
+
labels = input_ids.clone()
|
| 77 |
+
prompt_len = prompt_encoding["input_ids"].shape[1]
|
| 78 |
+
if prompt_len < self.max_length:
|
| 79 |
+
labels[:prompt_len] = -100
|
| 80 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
| 81 |
+
|
| 82 |
+
class DiffusionDataset(Dataset):
|
| 83 |
+
def __init__(self, images, texts):
|
| 84 |
+
self.images = images
|
| 85 |
+
self.texts = texts
|
| 86 |
+
def __len__(self):
|
| 87 |
+
return len(self.images)
|
| 88 |
+
def __getitem__(self, idx):
|
| 89 |
+
return {"image": self.images[idx], "text": self.texts[idx]}
|
| 90 |
+
|
| 91 |
+
# Model Builders
|
| 92 |
+
class ModelBuilder:
|
| 93 |
+
def __init__(self):
|
| 94 |
+
self.config = None
|
| 95 |
+
self.model = None
|
| 96 |
+
self.tokenizer = None
|
| 97 |
+
self.sft_data = None
|
| 98 |
+
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
|
| 99 |
+
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
| 100 |
+
with st.spinner(f"Loading {model_path}... ⏳"):
|
| 101 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 102 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 103 |
+
if self.tokenizer.pad_token is None:
|
| 104 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 105 |
+
if config:
|
| 106 |
+
self.config = config
|
| 107 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
| 108 |
+
return self
|
| 109 |
+
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
| 110 |
+
self.sft_data = []
|
| 111 |
+
with open(csv_path, "r") as f:
|
| 112 |
+
reader = csv.DictReader(f)
|
| 113 |
+
for row in reader:
|
| 114 |
+
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
| 115 |
+
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
| 116 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
| 117 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
| 118 |
+
self.model.train()
|
| 119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 120 |
+
self.model.to(device)
|
| 121 |
+
for epoch in range(epochs):
|
| 122 |
+
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"):
|
| 123 |
+
total_loss = 0
|
| 124 |
+
for batch in dataloader:
|
| 125 |
+
optimizer.zero_grad()
|
| 126 |
+
input_ids = batch["input_ids"].to(device)
|
| 127 |
+
attention_mask = batch["attention_mask"].to(device)
|
| 128 |
+
labels = batch["labels"].to(device)
|
| 129 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
| 130 |
+
loss = outputs.loss
|
| 131 |
+
loss.backward()
|
| 132 |
+
optimizer.step()
|
| 133 |
+
total_loss += loss.item()
|
| 134 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
| 135 |
+
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
|
| 136 |
+
return self
|
| 137 |
+
def save_model(self, path: str):
|
| 138 |
+
with st.spinner("Saving model... 💾"):
|
| 139 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 140 |
+
self.model.save_pretrained(path)
|
| 141 |
+
self.tokenizer.save_pretrained(path)
|
| 142 |
+
st.success(f"Model saved at {path}! ✅")
|
| 143 |
+
def evaluate(self, prompt: str, status_container=None):
|
| 144 |
+
self.model.eval()
|
| 145 |
+
if status_container:
|
| 146 |
+
status_container.write("Preparing to evaluate... 🧠")
|
| 147 |
+
try:
|
| 148 |
+
with torch.no_grad():
|
| 149 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
| 150 |
+
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
| 151 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 152 |
+
except Exception as e:
|
| 153 |
+
if status_container:
|
| 154 |
+
status_container.error(f"Oops! Something broke: {str(e)} 💥")
|
| 155 |
+
return f"Error: {str(e)}"
|
| 156 |
+
|
| 157 |
+
class DiffusionBuilder:
|
| 158 |
+
def __init__(self):
|
| 159 |
+
self.config = None
|
| 160 |
+
self.pipeline = None
|
| 161 |
+
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
| 162 |
+
from diffusers import StableDiffusionPipeline
|
| 163 |
+
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
|
| 164 |
+
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
|
| 165 |
+
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 166 |
+
if config:
|
| 167 |
+
self.config = config
|
| 168 |
+
st.success(f"Diffusion model loaded! 🎨")
|
| 169 |
+
return self
|
| 170 |
+
def fine_tune_sft(self, images, texts, epochs=3):
|
| 171 |
+
dataset = DiffusionDataset(images, texts)
|
| 172 |
+
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
| 173 |
+
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
| 174 |
+
self.pipeline.unet.train()
|
| 175 |
+
for epoch in range(epochs):
|
| 176 |
+
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
|
| 177 |
+
total_loss = 0
|
| 178 |
+
for batch in dataloader:
|
| 179 |
+
optimizer.zero_grad()
|
| 180 |
+
image = batch["image"].to(self.pipeline.device)
|
| 181 |
+
text = batch["text"]
|
| 182 |
+
latents = self.pipeline.vae.encode(image).latent_dist.sample()
|
| 183 |
+
noise = torch.randn_like(latents)
|
| 184 |
+
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
| 185 |
+
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
| 186 |
+
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
|
| 187 |
+
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
| 188 |
+
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
| 189 |
+
loss.backward()
|
| 190 |
+
optimizer.step()
|
| 191 |
+
total_loss += loss.item()
|
| 192 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
| 193 |
+
st.success("Diffusion SFT Fine-tuning completed! 🎨")
|
| 194 |
+
return self
|
| 195 |
+
def save_model(self, path: str):
|
| 196 |
+
with st.spinner("Saving diffusion model... 💾"):
|
| 197 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 198 |
+
self.pipeline.save_pretrained(path)
|
| 199 |
+
st.success(f"Diffusion model saved at {path}! ✅")
|
| 200 |
+
def generate(self, prompt: str):
|
| 201 |
+
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
| 202 |
+
|
| 203 |
+
# Utility Functions
|
| 204 |
+
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
| 205 |
+
with open(file_path, 'rb') as f:
|
| 206 |
+
data = f.read()
|
| 207 |
+
b64 = base64.b64encode(data).decode()
|
| 208 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
|
| 209 |
+
|
| 210 |
+
def zip_directory(directory_path, zip_path):
|
| 211 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 212 |
+
for root, _, files in os.walk(directory_path):
|
| 213 |
+
for file in files:
|
| 214 |
+
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
| 215 |
+
|
| 216 |
+
def get_model_files(model_type="causal_lm"):
|
| 217 |
+
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
|
| 218 |
+
return [d for d in glob.glob(path) if os.path.isdir(d)]
|
| 219 |
+
|
| 220 |
+
def get_gallery_files(file_types):
|
| 221 |
+
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
|
| 222 |
+
|
| 223 |
+
def mock_search(query: str) -> str:
|
| 224 |
+
if "superhero" in query.lower():
|
| 225 |
+
return "Latest trends for 2025: Gold-plated Batman statues, VR superhero battles."
|
| 226 |
+
return "No relevant results found."
|
| 227 |
+
|
| 228 |
+
class PartyPlannerAgent:
|
| 229 |
+
def __init__(self, model, tokenizer):
|
| 230 |
+
self.model = model
|
| 231 |
+
self.tokenizer = tokenizer
|
| 232 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 233 |
+
self.model.to(self.device)
|
| 234 |
+
def generate(self, prompt: str) -> str:
|
| 235 |
+
self.model.eval()
|
| 236 |
+
with torch.no_grad():
|
| 237 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
|
| 238 |
+
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
|
| 239 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 240 |
+
def plan_party(self, task: str) -> pd.DataFrame:
|
| 241 |
+
search_result = mock_search("superhero party trends")
|
| 242 |
+
prompt = f"Given this context: '{search_result}'\n{task}"
|
| 243 |
+
plan_text = self.generate(prompt)
|
| 244 |
+
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)}
|
| 245 |
+
wayne_coords = locations["Wayne Manor"]
|
| 246 |
+
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
|
| 247 |
+
data = [
|
| 248 |
+
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues"},
|
| 249 |
+
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles"}
|
| 250 |
+
]
|
| 251 |
+
return pd.DataFrame(data)
|
| 252 |
+
|
| 253 |
+
class CVPartyPlannerAgent:
|
| 254 |
+
def __init__(self, pipeline):
|
| 255 |
+
self.pipeline = pipeline
|
| 256 |
+
def generate(self, prompt: str) -> Image.Image:
|
| 257 |
+
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
| 258 |
+
def plan_party(self, task: str) -> pd.DataFrame:
|
| 259 |
+
search_result = mock_search("superhero party trends")
|
| 260 |
+
prompt = f"Given this context: '{search_result}'\n{task}"
|
| 261 |
+
data = [
|
| 262 |
+
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
|
| 263 |
+
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
|
| 264 |
+
]
|
| 265 |
+
return pd.DataFrame(data)
|
| 266 |
+
|
| 267 |
+
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
| 268 |
+
def to_radians(degrees: float) -> float:
|
| 269 |
+
return degrees * (math.pi / 180)
|
| 270 |
+
lat1, lon1 = map(to_radians, origin_coords)
|
| 271 |
+
lat2, lon2 = map(to_radians, destination_coords)
|
| 272 |
+
EARTH_RADIUS_KM = 6371.0
|
| 273 |
+
dlon = lon2 - lon1
|
| 274 |
+
dlat = lat2 - lat1
|
| 275 |
+
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
| 276 |
+
c = 2 * math.asin(math.sqrt(a))
|
| 277 |
+
distance = EARTH_RADIUS_KM * c
|
| 278 |
+
actual_distance = distance * 1.1
|
| 279 |
+
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
| 280 |
+
return round(flight_time, 2)
|
| 281 |
+
|
| 282 |
+
# Main App
|
| 283 |
+
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
|
| 284 |
+
|
| 285 |
+
# Sidebar Galleries
|
| 286 |
+
st.sidebar.header("Media Gallery 🎨")
|
| 287 |
+
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
|
| 288 |
+
media_files = get_gallery_files(["png"])
|
| 289 |
+
if media_files:
|
| 290 |
+
cols = st.sidebar.columns(2)
|
| 291 |
+
for idx, file in enumerate(media_files[:gallery_size * 2]):
|
| 292 |
+
with cols[idx % 2]:
|
| 293 |
+
st.image(Image.open(file), caption=file, use_column_width=True)
|
| 294 |
+
|
| 295 |
+
st.sidebar.subheader("Model Management 🗂️")
|
| 296 |
+
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"])
|
| 297 |
+
model_dirs = get_model_files("causal_lm" if model_type == "Causal LM" else "diffusion")
|
| 298 |
+
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
| 299 |
+
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
| 300 |
+
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
| 301 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
|
| 302 |
+
builder.load_model(selected_model, config)
|
| 303 |
+
st.session_state['builder'] = builder
|
| 304 |
+
st.session_state['model_loaded'] = True
|
| 305 |
+
st.rerun()
|
| 306 |
+
|
| 307 |
+
# Tabs
|
| 308 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titan 🔧", "Test Titan 🧪", "Agentic RAG Party 🌐"])
|
| 309 |
+
|
| 310 |
+
with tab1:
|
| 311 |
+
st.header("Build Titan 🌱")
|
| 312 |
+
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
| 313 |
+
base_model = st.selectbox("Select Tiny Model",
|
| 314 |
+
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
|
| 315 |
+
["stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"])
|
| 316 |
+
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
| 317 |
+
if st.button("Download Model ⬇️"):
|
| 318 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small")
|
| 319 |
+
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
| 320 |
+
builder.load_model(base_model, config)
|
| 321 |
+
builder.save_model(config.model_path)
|
| 322 |
+
st.session_state['builder'] = builder
|
| 323 |
+
st.session_state['model_loaded'] = True
|
| 324 |
+
st.rerun()
|
| 325 |
+
|
| 326 |
+
with tab2:
|
| 327 |
+
st.header("Camera Snap 📷 (Dual Capture!)")
|
| 328 |
+
slice_count = st.number_input("Image Slice Count", min_value=1, max_value=20, value=10)
|
| 329 |
+
video_length = st.number_input("Video Length (seconds)", min_value=1, max_value=30, value=10)
|
| 330 |
+
cols = st.columns(2)
|
| 331 |
+
with cols[0]:
|
| 332 |
+
st.subheader("Camera 0")
|
| 333 |
+
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
| 334 |
+
if cam0_img:
|
| 335 |
+
filename = generate_filename(0)
|
| 336 |
+
with open(filename, "wb") as f:
|
| 337 |
+
f.write(cam0_img.getvalue())
|
| 338 |
+
st.image(Image.open(filename), caption=filename, use_column_width=True)
|
| 339 |
+
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
| 340 |
+
if 'captured_images' not in st.session_state:
|
| 341 |
+
st.session_state['captured_images'] = []
|
| 342 |
+
st.session_state['captured_images'].append(filename)
|
| 343 |
+
update_gallery()
|
| 344 |
+
if st.button(f"Capture {slice_count} Frames - Cam 0 📸"):
|
| 345 |
+
st.session_state['cam0_frames'] = []
|
| 346 |
+
for i in range(slice_count):
|
| 347 |
+
img = st.camera_input(f"Frame {i} - Cam 0", key=f"cam0_frame_{i}_{time.time()}")
|
| 348 |
+
if img:
|
| 349 |
+
filename = generate_filename(f"0_{i}")
|
| 350 |
+
with open(filename, "wb") as f:
|
| 351 |
+
f.write(img.getvalue())
|
| 352 |
+
st.session_state['cam0_frames'].append(filename)
|
| 353 |
+
logger.info(f"Saved frame {i} from Camera 0: {filename}")
|
| 354 |
+
time.sleep(1.0 / slice_count) # Adjust frame rate
|
| 355 |
+
st.session_state['captured_images'].extend(st.session_state['cam0_frames'])
|
| 356 |
+
update_gallery()
|
| 357 |
+
for frame in st.session_state['cam0_frames']:
|
| 358 |
+
st.image(Image.open(frame), caption=frame, use_column_width=True)
|
| 359 |
+
with cols[1]:
|
| 360 |
+
st.subheader("Camera 1")
|
| 361 |
+
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
| 362 |
+
if cam1_img:
|
| 363 |
+
filename = generate_filename(1)
|
| 364 |
+
with open(filename, "wb") as f:
|
| 365 |
+
f.write(cam1_img.getvalue())
|
| 366 |
+
st.image(Image.open(filename), caption=filename, use_column_width=True)
|
| 367 |
+
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
| 368 |
+
if 'captured_images' not in st.session_state:
|
| 369 |
+
st.session_state['captured_images'] = []
|
| 370 |
+
st.session_state['captured_images'].append(filename)
|
| 371 |
+
update_gallery()
|
| 372 |
+
if st.button(f"Capture {slice_count} Frames - Cam 1 📸"):
|
| 373 |
+
st.session_state['cam1_frames'] = []
|
| 374 |
+
for i in range(slice_count):
|
| 375 |
+
img = st.camera_input(f"Frame {i} - Cam 1", key=f"cam1_frame_{i}_{time.time()}")
|
| 376 |
+
if img:
|
| 377 |
+
filename = generate_filename(f"1_{i}")
|
| 378 |
+
with open(filename, "wb") as f:
|
| 379 |
+
f.write(img.getvalue())
|
| 380 |
+
st.session_state['cam1_frames'].append(filename)
|
| 381 |
+
logger.info(f"Saved frame {i} from Camera 1: {filename}")
|
| 382 |
+
time.sleep(1.0 / slice_count) # Adjust frame rate
|
| 383 |
+
st.session_state['captured_images'].extend(st.session_state['cam1_frames'])
|
| 384 |
+
update_gallery()
|
| 385 |
+
for frame in st.session_state['cam1_frames']:
|
| 386 |
+
st.image(Image.open(frame), caption=frame, use_column_width=True)
|
| 387 |
+
|
| 388 |
+
with tab3:
|
| 389 |
+
st.header("Fine-Tune Titan 🔧")
|
| 390 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
| 391 |
+
st.warning("Please build or load a Titan first! ⚠️")
|
| 392 |
+
else:
|
| 393 |
+
if isinstance(st.session_state['builder'], ModelBuilder):
|
| 394 |
+
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
|
| 395 |
+
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
|
| 396 |
+
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
| 397 |
+
with open(csv_path, "wb") as f:
|
| 398 |
+
f.write(uploaded_csv.read())
|
| 399 |
+
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
| 400 |
+
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
|
| 401 |
+
st.session_state['builder'].config = new_config
|
| 402 |
+
st.session_state['builder'].fine_tune_sft(csv_path)
|
| 403 |
+
st.session_state['builder'].save_model(new_config.model_path)
|
| 404 |
+
zip_path = f"{new_config.model_path}.zip"
|
| 405 |
+
zip_directory(new_config.model_path, zip_path)
|
| 406 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
|
| 407 |
+
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
| 408 |
+
captured_images = get_gallery_files(["png"])
|
| 409 |
+
if len(captured_images) >= 2:
|
| 410 |
+
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_images[:min(len(captured_images), slice_count)]]
|
| 411 |
+
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
|
| 412 |
+
if st.button("Fine-Tune with Dataset 🔄"):
|
| 413 |
+
images = [Image.open(row["image"]) for _, row in edited_data.iterrows()]
|
| 414 |
+
texts = [row["text"] for _, row in edited_data.iterrows()]
|
| 415 |
+
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
| 416 |
+
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
|
| 417 |
+
st.session_state['builder'].config = new_config
|
| 418 |
+
st.session_state['builder'].fine_tune_sft(images, texts)
|
| 419 |
+
st.session_state['builder'].save_model(new_config.model_path)
|
| 420 |
+
zip_path = f"{new_config.model_path}.zip"
|
| 421 |
+
zip_directory(new_config.model_path, zip_path)
|
| 422 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
|
| 423 |
+
|
| 424 |
+
with tab4:
|
| 425 |
+
st.header("Test Titan 🧪")
|
| 426 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
| 427 |
+
st.warning("Please build or load a Titan first! ⚠️")
|
| 428 |
+
else:
|
| 429 |
+
if isinstance(st.session_state['builder'], ModelBuilder):
|
| 430 |
+
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
|
| 431 |
+
if st.button("Run Test ▶️"):
|
| 432 |
+
result = st.session_state['builder'].evaluate(test_prompt)
|
| 433 |
+
st.write(f"**Generated Response**: {result}")
|
| 434 |
+
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
| 435 |
+
test_prompt = st.text_area("Enter Test Prompt", "Neon Batman")
|
| 436 |
+
if st.button("Run Test ▶️"):
|
| 437 |
+
image = st.session_state['builder'].generate(test_prompt)
|
| 438 |
+
st.image(image, caption="Generated Image")
|
| 439 |
+
|
| 440 |
+
with tab5:
|
| 441 |
+
st.header("Agentic RAG Party 🌐")
|
| 442 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
| 443 |
+
st.warning("Please build or load a Titan first! ⚠️")
|
| 444 |
+
else:
|
| 445 |
+
if isinstance(st.session_state['builder'], ModelBuilder):
|
| 446 |
+
if st.button("Run NLP RAG Demo 🎉"):
|
| 447 |
+
agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
|
| 448 |
+
task = "Plan a luxury superhero-themed party at Wayne Manor."
|
| 449 |
+
plan_df = agent.plan_party(task)
|
| 450 |
+
st.dataframe(plan_df)
|
| 451 |
+
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
| 452 |
+
if st.button("Run CV RAG Demo 🎉"):
|
| 453 |
+
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
|
| 454 |
+
task = "Generate images for a luxury superhero-themed party."
|
| 455 |
+
plan_df = agent.plan_party(task)
|
| 456 |
+
st.dataframe(plan_df)
|
| 457 |
+
for _, row in plan_df.iterrows():
|
| 458 |
+
image = agent.generate(row["Image Idea"])
|
| 459 |
+
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
|