Create face_recognition_system.py
Browse files- face_recognition_system.py +129 -0
face_recognition_system.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
from ultralytics import YOLO
|
| 4 |
+
from arcface import ArcFace
|
| 5 |
+
import pickle
|
| 6 |
+
import os
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
|
| 9 |
+
class FaceRecognitionSystem:
|
| 10 |
+
def __init__(self, database_path="face_database.pkl", confidence_threshold=0.5, similarity_threshold=2):
|
| 11 |
+
# Initialize YOLO for face detection
|
| 12 |
+
self.yolo_model = YOLO('https://github.com/akanametov/yolo-face/releases/download/v0.0.0/yolov11s-face.pt')
|
| 13 |
+
|
| 14 |
+
# Initialize ArcFace for face recognition
|
| 15 |
+
self.face_rec = ArcFace.ArcFace("model.tflite")
|
| 16 |
+
|
| 17 |
+
# Thresholds
|
| 18 |
+
self.confidence_threshold = confidence_threshold
|
| 19 |
+
self.similarity_threshold = similarity_threshold
|
| 20 |
+
|
| 21 |
+
# Load or create face database
|
| 22 |
+
self.database_path = database_path
|
| 23 |
+
self.face_database = self.load_database()
|
| 24 |
+
|
| 25 |
+
def load_database(self):
|
| 26 |
+
if os.path.exists(self.database_path):
|
| 27 |
+
with open(self.database_path, 'rb') as f:
|
| 28 |
+
return pickle.load(f)
|
| 29 |
+
return {}
|
| 30 |
+
|
| 31 |
+
def save_database(self):
|
| 32 |
+
with open(self.database_path, 'wb') as f:
|
| 33 |
+
pickle.dump(self.face_database, f)
|
| 34 |
+
|
| 35 |
+
def add_face_to_database(self, name, frame):
|
| 36 |
+
"""Add a new face to the database"""
|
| 37 |
+
try:
|
| 38 |
+
embedding = self.face_rec.calc_emb(frame)
|
| 39 |
+
self.face_database[name] = embedding
|
| 40 |
+
self.save_database()
|
| 41 |
+
return True
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error adding face to database: {e}")
|
| 44 |
+
return False
|
| 45 |
+
|
| 46 |
+
def find_closest_match(self, embedding):
|
| 47 |
+
"""Find the closest matching face in the database"""
|
| 48 |
+
if not self.face_database:
|
| 49 |
+
return "Unknown", 1.0
|
| 50 |
+
|
| 51 |
+
min_distance = 10000
|
| 52 |
+
closest_name = "Unknown"
|
| 53 |
+
|
| 54 |
+
for name, stored_embedding in self.face_database.items():
|
| 55 |
+
distance = self.face_rec.get_distance_embeddings(embedding, stored_embedding)
|
| 56 |
+
if distance < min_distance:
|
| 57 |
+
min_distance = distance
|
| 58 |
+
closest_name = name
|
| 59 |
+
|
| 60 |
+
return closest_name, min_distance
|
| 61 |
+
|
| 62 |
+
def process_frame(self, frame):
|
| 63 |
+
"""Process a single frame"""
|
| 64 |
+
# Run YOLO detection
|
| 65 |
+
results = self.yolo_model(frame, verbose=False)[0]
|
| 66 |
+
|
| 67 |
+
# Process each detected face
|
| 68 |
+
for detection in results.boxes.data:
|
| 69 |
+
x1, y1, x2, y2, conf, _ = detection
|
| 70 |
+
|
| 71 |
+
if conf < self.confidence_threshold:
|
| 72 |
+
continue
|
| 73 |
+
|
| 74 |
+
# Convert coordinates to integers
|
| 75 |
+
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
|
| 76 |
+
|
| 77 |
+
# Extract face region
|
| 78 |
+
face_region = frame[y1:y2, x1:x2]
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
# Calculate face embedding
|
| 82 |
+
embedding = self.face_rec.calc_emb(face_region)
|
| 83 |
+
|
| 84 |
+
# Find closest match
|
| 85 |
+
name, distance = self.find_closest_match(embedding)
|
| 86 |
+
|
| 87 |
+
# Determine if match is close enough
|
| 88 |
+
if distance > self.similarity_threshold:
|
| 89 |
+
name = "Unknown"
|
| 90 |
+
|
| 91 |
+
# Draw rectangle and name
|
| 92 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 93 |
+
cv2.putText(frame, f"{name} ({conf:.2f})",
|
| 94 |
+
(x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
| 95 |
+
0.5, (0, 255, 0), 2)
|
| 96 |
+
|
| 97 |
+
except Exception as e:
|
| 98 |
+
print(f"Error processing face: {e}")
|
| 99 |
+
|
| 100 |
+
return frame
|
| 101 |
+
|
| 102 |
+
def run(self):
|
| 103 |
+
"""Run the face recognition system on webcam feed"""
|
| 104 |
+
cap = cv2.VideoCapture(0)
|
| 105 |
+
|
| 106 |
+
while True:
|
| 107 |
+
ret, frame = cap.read()
|
| 108 |
+
if not ret:
|
| 109 |
+
break
|
| 110 |
+
|
| 111 |
+
# Process the frame
|
| 112 |
+
processed_frame = self.process_frame(frame)
|
| 113 |
+
|
| 114 |
+
# Display the result
|
| 115 |
+
cv2.imshow('Face Recognition', processed_frame)
|
| 116 |
+
|
| 117 |
+
key = cv2.waitKey(1)
|
| 118 |
+
if key == ord('q'):
|
| 119 |
+
break
|
| 120 |
+
elif key == ord('a'):
|
| 121 |
+
# Add new face to database
|
| 122 |
+
name = input("Enter name for new face: ")
|
| 123 |
+
if self.add_face_to_database(name, frame):
|
| 124 |
+
print(f"Successfully added {name} to database")
|
| 125 |
+
else:
|
| 126 |
+
print("Failed to add face to database")
|
| 127 |
+
|
| 128 |
+
cap.release()
|
| 129 |
+
cv2.destroyAllWindows()
|