File size: 13,737 Bytes
4910a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import Literal

import torch
from einops import rearrange
from PIL import ExifTags, Image
import torchvision.transforms.functional as TVF


from withanyone.flux.modules.layers import (
    DoubleStreamBlockLoraProcessor,
    DoubleStreamBlockProcessor,
    SingleStreamBlockLoraProcessor,
    SingleStreamBlockProcessor,
)
from withanyone.flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
from withanyone.flux.util import (
    load_ae,
    load_clip,
    load_flow_model_no_lora,
    load_flow_model_diffusers,
    load_t5,
)

from withanyone.flux.model import SiglipEmbedding, create_person_cross_attention_mask_varlen


def preprocess_ref(raw_image: Image.Image, long_size: int = 512):

    image_w, image_h = raw_image.size

    if image_w >= image_h:
        new_w = long_size
        new_h = int((long_size / image_w) * image_h)
    else:
        new_h = long_size
        new_w = int((long_size / image_h) * image_w)

    raw_image = raw_image.resize((new_w, new_h), resample=Image.LANCZOS)
    target_w = new_w // 16 * 16
    target_h = new_h // 16 * 16

    left = (new_w - target_w) // 2
    top = (new_h - target_h) // 2
    right = left + target_w
    bottom = top + target_h


    raw_image = raw_image.crop((left, top, right, bottom))


    raw_image = raw_image.convert("RGB")
    return raw_image


from io import BytesIO
import insightface
import numpy as np
class FaceExtractor:
    def __init__(self, model_path = "./"):

        self.model = insightface.app.FaceAnalysis(name = "antelopev2", root=model_path, providers=['CUDAExecutionProvider'])
        self.model.prepare(ctx_id=0, det_thresh=0.45)
    
    def extract_moref(self, img, bboxes, face_size_restriction=1):
        """
        Extract faces from an image based on bounding boxes in JSON data.
        Makes each face square and resizes to 512x512.
        
        Args:
            img: PIL Image or image data
            json_data: JSON object with 'bboxes' and 'crop' information
            
        Returns:
            List of PIL Images, each 512x512, containing extracted faces
        """
        # Ensure img is a PIL Image
        try:
            if not isinstance(img, Image.Image) and not isinstance(img, torch.Tensor):
                img = Image.open(BytesIO(img))
            
            # bboxes = json_data['bboxes']
            # crop = json_data['crop']
            # print("len of bboxes:", len(bboxes))
            # Recalculate bounding boxes based on crop info
            # new_bboxes = [recalculate_bbox(bbox, crop) for bbox in bboxes]
            new_bboxes = bboxes
            # any of the face is less than 100 * 100, we ignore this image
            for bbox in new_bboxes:
                x1, y1, x2, y2 = bbox
                if x2 - x1 < face_size_restriction or y2 - y1 < face_size_restriction:
                    return []
            # print("len of new_bboxes:", len(new_bboxes))
            faces = []
            for bbox in new_bboxes:
                # print("processing bbox")
                # Convert coordinates to integers
                x1, y1, x2, y2 = map(int, bbox)
                
                # Calculate width and height
                width = x2 - x1
                height = y2 - y1
                
                # Make the bounding box square by expanding the shorter dimension
                if width > height:
                    # Height is shorter, expand it
                    diff = width - height
                    y1 -= diff // 2
                    y2 += diff - (diff // 2)  # Handle odd differences
                elif height > width:
                    # Width is shorter, expand it
                    diff = height - width
                    x1 -= diff // 2
                    x2 += diff - (diff // 2)  # Handle odd differences
                
                # Ensure coordinates are within image boundaries
                img_width, img_height = img.size
                x1 = max(0, x1)
                y1 = max(0, y1)
                x2 = min(img_width, x2)
                y2 = min(img_height, y2)
                
                # Extract face region
                face_region = img.crop((x1, y1, x2, y2))
                
                # Resize to 512x512
                face_region = face_region.resize((512, 512), Image.LANCZOS)
                
                faces.append(face_region)
            # print("len of faces:", len(faces))
            return faces
        except Exception as e:
            print(f"Error processing image: {e}")
            return []

    def __call__(self, img):
        # if np, get PIL, else, get np
        if isinstance(img, torch.Tensor):
            img_np = img.cpu().numpy()
            img_pil = Image.fromarray(img_np)
        elif isinstance(img, Image.Image):
            img_pil = img
            img_np = np.array(img)
        elif isinstance(img, np.ndarray):
            img_np = img
            img_pil = Image.fromarray(img)

        else:
            raise ValueError("Unsupported image format. Please provide a PIL Image or numpy array.")
        # Detect faces in the image
        faces = self.model.get(img_np)
        # use one 
        if len(faces) > 0:
            bboxes = []
            face = faces[0]
            bbox = face.bbox.astype(int)
            bboxes.append(bbox)
            return self.extract_moref(img_pil, bboxes)[0]
        else:
            print("Warning: No faces detected in the image.")
            return img_pil
            
    
class WithAnyonePipeline:
    def __init__(
        self,
        model_type: str,
        ipa_path: str,
        device: torch.device,
        offload: bool = False,
        only_lora: bool = False,
        no_lora: bool = False,
        lora_rank: int = 16,
        face_extractor = None,
        additional_lora_ckpt: str = None,
        lora_weight: float = 1.0,
        clip_path: str = "openai/clip-vit-large-patch14",
        t5_path: str = "xlabs-ai/xflux_text_encoders",
        flux_path: str = "black-forest-labs/FLUX.1-dev",
        siglip_path: str = "google/siglip-base-patch16-256-i18n",
        
    ):
        self.device = device
        self.offload = offload
        self.model_type = model_type

        self.clip = load_clip(clip_path, self.device)
        self.t5 = load_t5(t5_path, self.device, max_length=512)
        self.ae = load_ae(flux_path, model_type, device="cpu" if offload else self.device)
        self.use_fp8 = "fp8" in model_type


        if additional_lora_ckpt is not None:
            self.model = load_flow_model_diffusers(
                model_type,
                flux_path,
                ipa_path,
                device="cpu" if offload else self.device,
                lora_rank=lora_rank,
                use_fp8=self.use_fp8,
                additional_lora_ckpt=additional_lora_ckpt,
                lora_weight=lora_weight,

            ).to("cuda" if torch.cuda.is_available() else "cpu")
        else:
            self.model = load_flow_model_no_lora(
                model_type,
                flux_path,
                ipa_path,
                device="cpu" if offload else self.device,
                use_fp8=self.use_fp8
            )

        if face_extractor is not None:
            self.face_extractor = face_extractor
        else:
            self.face_extractor = FaceExtractor()

        self.siglip = SiglipEmbedding(siglip_path=siglip_path)


    def load_ckpt(self, ckpt_path):
        if ckpt_path is not None:
            from safetensors.torch import load_file as load_sft
            print("Loading checkpoint to replace old keys")
            # load_sft doesn't support torch.device
            if ckpt_path.endswith('safetensors'):
                sd = load_sft(ckpt_path, device='cpu')
                missing, unexpected = self.model.load_state_dict(sd, strict=False, assign=True)
            else:
                dit_state = torch.load(ckpt_path, map_location='cpu')
                sd = {}
                for k in dit_state.keys():
                    sd[k.replace('module.','')] = dit_state[k]
                missing, unexpected = self.model.load_state_dict(sd, strict=False, assign=True)
                self.model.to(str(self.device))
            print(f"missing keys: {missing}\n\n\n\n\nunexpected keys: {unexpected}")



    def __call__(
        self,
        prompt: str,
        width: int = 512,
        height: int = 512,
        guidance: float = 4,
        num_steps: int = 50,
        seed: int = 123456789,
        **kwargs
    ):
        width = 16 * (width // 16)
        height = 16 * (height // 16)

        device_type = self.device if isinstance(self.device, str) else self.device.type
        if device_type == "mps":
            device_type = "cpu"  # for support macos mps
        with torch.autocast(enabled=self.use_fp8, device_type=device_type, dtype=torch.bfloat16):
            return self.forward(
                prompt,
                width,
                height,
                guidance,
                num_steps,
                seed,       
                **kwargs
            )



    @torch.inference_mode
    def forward(
        self,
        prompt: str,
        width: int,
        height: int,
        guidance: float,
        num_steps: int,
        seed: int,
        ref_imgs: list[Image.Image] | None = None,
        arcface_embeddings: list[torch.Tensor] = None,
        bboxes = None,
        id_weight: float = 1.0,
        siglip_weight: float = 1.0,
    ):
        x = get_noise(
            1, height, width, device=self.device,
            dtype=torch.bfloat16, seed=seed
        )
        timesteps = get_schedule(
            num_steps,
            (width // 8) * (height // 8) // (16 * 16),
            shift=True,
        )
        if self.offload:
            self.ae.encoder = self.ae.encoder.to(self.device)

        if ref_imgs is None:
            siglip_embeddings = None
        else:
            siglip_embeddings = self.siglip(ref_imgs).to(self.device, torch.bfloat16).permute(1,0,2,3)
            # num_ref, (1), n, d


        if arcface_embeddings is not None:
            arcface_embeddings =  arcface_embeddings.unsqueeze(1)
            # num_ref, 1, 512
            arcface_embeddings = arcface_embeddings.to(self.device, torch.bfloat16)


        if self.offload:
            self.offload_model_to_cpu(self.ae.encoder)
            self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)


        inp_cond = prepare(t5=self.t5, clip=self.clip,img=x,prompt=prompt
                           )
        if self.offload:
            self.offload_model_to_cpu(self.t5, self.clip)
            self.model = self.model.to(self.device)



        img = inp_cond["img"]
        img_length = img.shape[1]
        ##### create mask for siglip and arcface #####
        if bboxes is not None:
            arc_mask = create_person_cross_attention_mask_varlen(
                    batch_size=img.shape[0],
                    # num_heads=self.params.num_heads,
                    # txt_len=text_length,
                    img_len=img_length,
                    id_len=8,  
                    bbox_lists=bboxes,
                    max_num_ids=len(bboxes[0]),
                    original_width=width,
                    original_height= height,
                ).to(img.device)
            siglip_mask = create_person_cross_attention_mask_varlen(
                batch_size=img.shape[0],
                # num_heads=self.params.num_heads,
                # txt_len=text_length,
                img_len=img_length,
                id_len=256+8,  
                bbox_lists=bboxes,
                max_num_ids=len(bboxes[0]),
                original_width=width,
                original_height= height,
            ).to(img.device)





        results = denoise(
            self.model,
            **inp_cond,
            timesteps=timesteps,
            guidance=guidance,
            arcface_embeddings=arcface_embeddings,
            siglip_embeddings=siglip_embeddings,
            bboxes=bboxes,
            id_weight=id_weight,
            siglip_weight=siglip_weight,
            img_height=height,
            img_width=width,
            arc_mask=arc_mask if bboxes is not None else None,
            siglip_mask=siglip_mask if bboxes is not None else None,
        )

        x = results


        if self.offload:
            self.offload_model_to_cpu(self.model)
            self.ae.decoder.to(x.device)
        x = unpack(x.float(), height, width)
        x = self.ae.decode(x)
        self.offload_model_to_cpu(self.ae.decoder)

        x1 = x.clamp(-1, 1)
        x1 = rearrange(x1[-1], "c h w -> h w c")
        output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())


        return output_img

    def offload_model_to_cpu(self, *models):
        if not self.offload: return
        for model in models:
            model.cpu()
            torch.cuda.empty_cache()