import os from dataclasses import dataclass import torch import json import numpy as np from huggingface_hub import hf_hub_download from safetensors import safe_open from safetensors.torch import load_file as load_sft from withanyone.flux.model import Flux, FluxParams from .modules.autoencoder import AutoEncoder, AutoEncoderParams from .modules.conditioner import HFEmbedder import re from withanyone.flux.modules.layers import DoubleStreamBlockLoraProcessor, SingleStreamBlockLoraProcessor def c_crop(image): width, height = image.size new_size = min(width, height) left = (width - new_size) / 2 top = (height - new_size) / 2 right = (width + new_size) / 2 bottom = (height + new_size) / 2 return image.crop((left, top, right, bottom)) def pad64(x): return int(np.ceil(float(x) / 64.0) * 64 - x) def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y @dataclass class ModelSpec: params: FluxParams ae_params: AutoEncoderParams repo_id: str | None repo_flow: str | None repo_ae: str | None repo_id_ae: str | None configs = { "flux-dev": ModelSpec( repo_id="black-forest-labs/FLUX.1-dev", repo_id_ae="black-forest-labs/FLUX.1-dev", repo_flow="flux1-dev.safetensors", repo_ae="ae.safetensors", params=FluxParams( in_channels=64, vec_in_dim=768, context_in_dim=4096, hidden_size=3072, mlp_ratio=4.0, num_heads=24, depth=19, depth_single_blocks=38, axes_dim=[16, 56, 56], theta=10_000, qkv_bias=True, guidance_embed=True, ), ae_params=AutoEncoderParams( resolution=256, in_channels=3, ch=128, out_ch=3, ch_mult=[1, 2, 4, 4], num_res_blocks=2, z_channels=16, scale_factor=0.3611, shift_factor=0.1159, ), ), "flux-dev-fp8": ModelSpec( repo_id="black-forest-labs/FLUX.1-dev", repo_id_ae="black-forest-labs/FLUX.1-dev", repo_flow="flux1-dev.safetensors", repo_ae="ae.safetensors", params=FluxParams( in_channels=64, vec_in_dim=768, context_in_dim=4096, hidden_size=3072, mlp_ratio=4.0, num_heads=24, depth=19, depth_single_blocks=38, axes_dim=[16, 56, 56], theta=10_000, qkv_bias=True, guidance_embed=True, ), ae_params=AutoEncoderParams( resolution=256, in_channels=3, ch=128, out_ch=3, ch_mult=[1, 2, 4, 4], num_res_blocks=2, z_channels=16, scale_factor=0.3611, shift_factor=0.1159, ), ), "flux-krea": ModelSpec( repo_id="black-forest-labs/FLUX.1-Krea-dev", repo_id_ae="black-forest-labs/FLUX.1-Krea-dev", repo_flow="flux1-krea-dev.safetensors", repo_ae="ae.safetensors", params=FluxParams( in_channels=64, vec_in_dim=768, context_in_dim=4096, hidden_size=3072, mlp_ratio=4.0, num_heads=24, depth=19, depth_single_blocks=38, axes_dim=[16, 56, 56], theta=10_000, qkv_bias=True, guidance_embed=True, ), ae_params=AutoEncoderParams( resolution=256, in_channels=3, ch=128, out_ch=3, ch_mult=[1, 2, 4, 4], num_res_blocks=2, z_channels=16, scale_factor=0.3611, shift_factor=0.1159, ), ), "flux-schnell": ModelSpec( repo_id="black-forest-labs/FLUX.1-schnell", repo_id_ae="black-forest-labs/FLUX.1-dev", repo_flow="flux1-schnell.safetensors", repo_ae="ae.safetensors", params=FluxParams( in_channels=64, vec_in_dim=768, context_in_dim=4096, hidden_size=3072, mlp_ratio=4.0, num_heads=24, depth=19, depth_single_blocks=38, axes_dim=[16, 56, 56], theta=10_000, qkv_bias=True, guidance_embed=False, ), ae_params=AutoEncoderParams( resolution=256, in_channels=3, ch=128, out_ch=3, ch_mult=[1, 2, 4, 4], num_res_blocks=2, z_channels=16, scale_factor=0.3611, shift_factor=0.1159, ), ), } def print_load_warning(missing: list[str], unexpected: list[str]) -> None: if len(missing) > 0 and len(unexpected) > 0: print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) print("\n" + "-" * 79 + "\n") print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) elif len(missing) > 0: print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) elif len(unexpected) > 0: print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) def load_from_repo_id(repo_id, checkpoint_name): ckpt_path = hf_hub_download(repo_id, checkpoint_name) sd = load_sft(ckpt_path, device='cpu') return sd def load_flow_model_no_lora( name: str, path: str, ipa_path: str , device: str | torch.device = "cuda", hf_download: bool = True, lora_rank: int = 16, use_fp8: bool = False ): # Loading Flux print("Init model") ckpt_path = path if ckpt_path == "black-forest-labs/FLUX.1-dev" or ( ckpt_path is None and configs[name].repo_id is not None and configs[name].repo_flow is not None and hf_download ): ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow.replace("sft", "safetensors")) print("Downloading checkpoint from HF:", ckpt_path) # remove xet to save space import shutil shutil.rmtree("/home/user/.cache/huggingface/xet/") else: ckpt_path = os.path.join(path, "flux1-dev.safetensors") if path is not None else None ipa_ckpt_path = ipa_path with torch.device("meta" if ckpt_path is not None else device): model = Flux(configs[name].params) # model = set_lora(model, lora_rank, device="meta" if ipa_ckpt_path is not None else device) if ckpt_path is not None: if ipa_ckpt_path == 'WithAnyone/WithAnyone': ipa_ckpt_path = hf_hub_download("WithAnyone/WithAnyone", "withanyone.safetensors") lora_sd = load_sft(ipa_ckpt_path, device=str(device)) if ipa_ckpt_path.endswith("safetensors")\ else torch.load(ipa_ckpt_path, map_location='cpu') print("Loading main checkpoint") # load_sft doesn't support torch.device if ckpt_path.endswith('safetensors'): if use_fp8: print( "####\n" "We are in fp8 mode right now, since the fp8 checkpoint of XLabs-AI/flux-dev-fp8 seems broken\n" "we convert the fp8 checkpoint on flight from bf16 checkpoint\n" "If your storage is constrained" "you can save the fp8 checkpoint and replace the bf16 checkpoint by yourself\n" ) sd = load_sft(ckpt_path, device="cpu") sd = {k: v.to(dtype=torch.float8_e4m3fn, device=device) for k, v in sd.items()} else: sd = load_sft(ckpt_path, device=str(device)) # # Then proceed with the update sd.update(lora_sd) missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) else: dit_state = torch.load(ckpt_path, map_location='cpu') sd = {} for k in dit_state.keys(): sd[k.replace('module.','')] = dit_state[k] sd.update(lora_sd) missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) model.to(str(device)) print_load_warning(missing, unexpected) return model def merge_to_flux_model( loading_device, working_device, flux_state_dict, model, ratio, merge_dtype, save_dtype, mem_eff_load_save=False ): lora_name_to_module_key = {} keys = list(flux_state_dict.keys()) for key in keys: if key.endswith(".weight"): module_name = ".".join(key.split(".")[:-1]) lora_name = "lora_unet" + "_" + module_name.replace(".", "_") lora_name_to_module_key[lora_name] = key print(f"loading: {model}") lora_sd = load_sft(model, device=loading_device) if model.endswith("safetensors")\ else torch.load(model, map_location='cpu') print(f"merging...") for key in list(lora_sd.keys()): if "lora_down" in key: lora_name = key[: key.rfind(".lora_down")] up_key = key.replace("lora_down", "lora_up") alpha_key = key[: key.index("lora_down")] + "alpha" if lora_name not in lora_name_to_module_key: print(f"no module found for LoRA weight: {key}. LoRA for Text Encoder is not supported yet.") continue down_weight = lora_sd.pop(key) up_weight = lora_sd.pop(up_key) dim = down_weight.size()[0] alpha = lora_sd.pop(alpha_key, dim) scale = alpha / dim # W <- W + U * D module_weight_key = lora_name_to_module_key[lora_name] if module_weight_key not in flux_state_dict: # weight = flux_file.get_tensor(module_weight_key) print(f"no module found for LoRA weight: {module_weight_key}") else: weight = flux_state_dict[module_weight_key] weight = weight.to(working_device, merge_dtype) up_weight = up_weight.to(working_device, merge_dtype) down_weight = down_weight.to(working_device, merge_dtype) if len(weight.size()) == 2: # linear weight = weight + ratio * (up_weight @ down_weight) * scale elif down_weight.size()[2:4] == (1, 1): # conv2d 1x1 weight = ( weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale ) else: # conv2d 3x3 conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) weight = weight + ratio * conved * scale flux_state_dict[module_weight_key] = weight.to(loading_device, save_dtype) del up_weight del down_weight del weight if len(lora_sd) > 0: print(f"Unused keys in LoRA model: {list(lora_sd.keys())}") return flux_state_dict def load_flow_model_diffusers( name: str, path: str, ipa_path: str , device: str | torch.device = "cuda", hf_download: bool = True, lora_rank: int = 16, use_fp8: bool = False, additional_lora_ckpt: str | None = None, lora_weight: float = 1.0, ): # Loading Flux print("Init model") ckpt_path = os.path.join(path, "flux1-dev.safetensors") if path is not None else None print("Loading checkpoint from", ckpt_path) if ( ckpt_path is None and configs[name].repo_id is not None and configs[name].repo_flow is not None and hf_download ): ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow.replace("sft", "safetensors")) ipa_ckpt_path = ipa_path with torch.device("meta" if ckpt_path is not None else device): model = Flux(configs[name].params) # if additional_lora_ckpt is not None: # model = set_lora(model, lora_rank, device="meta" if ipa_ckpt_path is not None else device) assert additional_lora_ckpt is not None, "additional_lora_ckpt should have been provided. this must be a bug" if ckpt_path is not None: if ipa_ckpt_path == 'WithAnyone/WithAnyone': ipa_ckpt_path = hf_hub_download("WithAnyone/WithAnyone", "withanyone.safetensors") else: lora_sd = load_sft(ipa_ckpt_path, device=str(device)) if ipa_ckpt_path.endswith("safetensors")\ else torch.load(ipa_ckpt_path, map_location='cpu') extra_lora_path = additional_lora_ckpt print("Loading main checkpoint") # load_sft doesn't support torch.device if ckpt_path.endswith('safetensors'): if use_fp8: print( "####\n" "We are in fp8 mode right now, since the fp8 checkpoint of XLabs-AI/flux-dev-fp8 seems broken\n" "we convert the fp8 checkpoint on flight from bf16 checkpoint\n" "If your storage is constrained" "you can save the fp8 checkpoint and replace the bf16 checkpoint by yourself\n" ) sd = load_sft(ckpt_path, device="cpu") sd = {k: v.to(dtype=torch.float8_e4m3fn, device=device) for k, v in sd.items()} else: sd = load_sft(ckpt_path, device=str(device)) if extra_lora_path is not None: print("Merging extra lora to main checkpoint") lora_ckpt_path = extra_lora_path sd = merge_to_flux_model("cpu", device, sd, lora_ckpt_path, lora_weight, torch.float8_e4m3fn if use_fp8 else torch.bfloat16, torch.float8_e4m3fn if use_fp8 else torch.bfloat16) # # Then proceed with the update sd.update(ipa_lora_sd) missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) model.to(str(device)) else: dit_state = torch.load(ckpt_path, map_location='cpu') sd = {} for k in dit_state.keys(): sd[k.replace('module.','')] = dit_state[k] if extra_lora_path is not None: print("Merging extra lora to main checkpoint") lora_ckpt_path = extra_lora_path sd = merge_to_flux_model("cpu", device, sd, lora_ckpt_path, 1.0, torch.float8_e4m3fn if use_fp8 else torch.bfloat16, torch.float8_e4m3fn if use_fp8 else torch.bfloat16) sd.update(ipa_lora_sd) missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) model.to(str(device)) print_load_warning(missing, unexpected) return model def set_lora( model: Flux, lora_rank: int, double_blocks_indices: list[int] | None = None, single_blocks_indices: list[int] | None = None, device: str | torch.device = "cpu", ) -> Flux: double_blocks_indices = list(range(model.params.depth)) if double_blocks_indices is None else double_blocks_indices single_blocks_indices = list(range(model.params.depth_single_blocks)) if single_blocks_indices is None \ else single_blocks_indices lora_attn_procs = {} with torch.device(device): for name, attn_processor in model.attn_processors.items(): match = re.search(r'\.(\d+)\.', name) if match: layer_index = int(match.group(1)) if name.startswith("double_blocks") and layer_index in double_blocks_indices: lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(dim=model.params.hidden_size, rank=lora_rank) elif name.startswith("single_blocks") and layer_index in single_blocks_indices: lora_attn_procs[name] = SingleStreamBlockLoraProcessor(dim=model.params.hidden_size, rank=lora_rank) else: lora_attn_procs[name] = attn_processor model.set_attn_processor(lora_attn_procs) return model def load_t5(t5_path, device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder: # max length 64, 128, 256 and 512 should work (if your sequence is short enough) version = t5_path return HFEmbedder(version, max_length=max_length, torch_dtype=torch.bfloat16).to(device) def load_clip(clip_path, device: str | torch.device = "cuda") -> HFEmbedder: version = clip_path return HFEmbedder(version, max_length=77, torch_dtype=torch.bfloat16).to(device) def load_ae(flux_path, name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder: if flux_path == "black-forest-labs/FLUX.1-dev" or flux_path == "black-forest-labs/FLUX.1-schnell" or flux_path == "black-forest-labs/FLUX.1-Krea-dev" or flux_path == "black-forest-labs/FLUX.1-Kontext-dev": ckpt_path = hf_hub_download("black-forest-labs/FLUX.1-dev", "ae.safetensors") else: ckpt_path = os.path.join(flux_path, "ae.safetensors") if not os.path.exists(ckpt_path): # try diffusion_pytorch_model.safetensors ckpt_path = os.path.join(flux_path, "vae", "ae.safetensors") if not os.path.exists(ckpt_path): raise FileNotFoundError(f"Cannot find ae checkpoint in {flux_path}/ae.safetensors or {flux_path}/vae/ae.safetensors") # Loading the autoencoder print("Init AE") with torch.device("meta" if ckpt_path is not None else device): ae = AutoEncoder(configs[name].ae_params) # if ckpt_path is not None: assert ckpt_path is not None, "ckpt_path should have been provided. this must be a bug" sd = load_sft(ckpt_path, device=str(device)) missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True) print_load_warning(missing, unexpected) return ae