Spaces:
Sleeping
Sleeping
initial commit
Browse files- app.py +431 -0
- images/intro.jpg +0 -0
- showresults.py +98 -0
- utils.py +20 -0
app.py
ADDED
|
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import time
|
| 5 |
+
import csv
|
| 6 |
+
import json
|
| 7 |
+
import os
|
| 8 |
+
import random
|
| 9 |
+
import string
|
| 10 |
+
import sys
|
| 11 |
+
import time
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import numpy as np
|
| 14 |
+
import pandas as pd
|
| 15 |
+
from huggingface_hub import (
|
| 16 |
+
CommitScheduler,
|
| 17 |
+
HfApi,
|
| 18 |
+
InferenceClient,
|
| 19 |
+
login,
|
| 20 |
+
snapshot_download,
|
| 21 |
+
)
|
| 22 |
+
from PIL import Image
|
| 23 |
+
from utils import string_to_image
|
| 24 |
+
import matplotlib.backends.backend_agg as agg
|
| 25 |
+
import math
|
| 26 |
+
from pathlib import Path
|
| 27 |
+
import zipfile
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
np.random.seed(int(time.time()))
|
| 31 |
+
csv.field_size_limit(sys.maxsize)
|
| 32 |
+
np.random.seed(int(time.time()))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
###############################################################################################################
|
| 36 |
+
session_token = os.environ.get("SessionToken")
|
| 37 |
+
login(token=session_token)
|
| 38 |
+
|
| 39 |
+
# Using snapshot_download to handle the download and extraction
|
| 40 |
+
snapshot_download(
|
| 41 |
+
repo_id='XAI/PEEB-Data',
|
| 42 |
+
repo_type='dataset',
|
| 43 |
+
local_dir='./',
|
| 44 |
+
cache_dir='./hf_cache'
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
with zipfile.ZipFile('./data.zip', 'r') as zip_ref:
|
| 48 |
+
zip_ref.extractall("./")
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
NUMBER_OF_IMAGES = 30
|
| 52 |
+
intro_screen = Image.open("./images/intro.jpg")
|
| 53 |
+
|
| 54 |
+
meta_top1 = json.load(open("./dogs/top1/metadata.json"))
|
| 55 |
+
meta_topK = json.load(open("./dogs/topK/metadata.json"))
|
| 56 |
+
|
| 57 |
+
all_data = {}
|
| 58 |
+
all_data["top1"] = meta_top1
|
| 59 |
+
all_data["topK"] = meta_topK
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# for data in all_data["top1"] and all_data["topK"] add a key to show which type they are
|
| 63 |
+
for k in all_data["top1"].keys():
|
| 64 |
+
all_data["top1"][k]["type"] = "top1"
|
| 65 |
+
|
| 66 |
+
for k in all_data["topK"].keys():
|
| 67 |
+
all_data["topK"][k]["type"] = "topK"
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
REPO_URL = "taesiri/AdvisingNetworksReviewDataExtension"
|
| 72 |
+
JSON_DATASET_DIR = Path("responses")
|
| 73 |
+
|
| 74 |
+
################################################################################################################
|
| 75 |
+
|
| 76 |
+
scheduler = CommitScheduler(
|
| 77 |
+
repo_id=REPO_URL,
|
| 78 |
+
repo_type="dataset",
|
| 79 |
+
folder_path=JSON_DATASET_DIR,
|
| 80 |
+
path_in_repo="./data",
|
| 81 |
+
every=1,
|
| 82 |
+
private=True,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
if not JSON_DATASET_DIR.exists():
|
| 87 |
+
JSON_DATASET_DIR.mkdir()
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def generate_data(type_of_nns):
|
| 91 |
+
global NUMBER_OF_IMAGES
|
| 92 |
+
# randomly pick NUMBER_OF_IMAGES from the dataset with type type_of_nns
|
| 93 |
+
keys = list(all_data[type_of_nns].keys())
|
| 94 |
+
sample_data = random.sample(keys, NUMBER_OF_IMAGES)
|
| 95 |
+
|
| 96 |
+
data = []
|
| 97 |
+
for k in sample_data:
|
| 98 |
+
new_datapoint = all_data[type_of_nns][k]
|
| 99 |
+
new_datapoint["image-path"] = f"./dogs/{type_of_nns}/{k}.jpeg"
|
| 100 |
+
data.append(new_datapoint)
|
| 101 |
+
|
| 102 |
+
return data
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def load_sample(data, current_index):
|
| 106 |
+
current_datapoint = data[current_index]
|
| 107 |
+
|
| 108 |
+
image_path = current_datapoint["image-path"]
|
| 109 |
+
image = Image.open(image_path)
|
| 110 |
+
top_1 = current_datapoint["top1-label"]
|
| 111 |
+
top_1_score = current_datapoint["top1-score"]
|
| 112 |
+
|
| 113 |
+
q_template = (
|
| 114 |
+
"<div style='font-size: 24px;'>Sam guessed the Input image is "
|
| 115 |
+
"<span style='font-weight: bold;'>{}</span> "
|
| 116 |
+
"with <span style='font-weight: bold;'>{}%</span> "
|
| 117 |
+
"confidence. Is this bird a <span style='font-weight: bold;'>{}</span>?"
|
| 118 |
+
"</div>"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
q_template = (
|
| 122 |
+
"<div style='font-size: 24px;'>Sam guessed the Input image is "
|
| 123 |
+
"<span style='font-weight: bold;'>{}</span> "
|
| 124 |
+
"with <span style='font-weight: bold;'>{}%</span> "
|
| 125 |
+
"confidence.<br>Is this bird a <span style='font-weight: bold;'>{}</span>?"
|
| 126 |
+
"</div>"
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
top_1_score = top_1_score * 100
|
| 130 |
+
top_1_score = round(top_1_score, 2)
|
| 131 |
+
|
| 132 |
+
rounded_up_score = math.ceil(top_1_score)
|
| 133 |
+
rounded_up_score = int(rounded_up_score)
|
| 134 |
+
question = q_template.format(top_1, str(rounded_up_score), top_1)
|
| 135 |
+
|
| 136 |
+
accept_reject = current_datapoint["Accept/Reject"]
|
| 137 |
+
|
| 138 |
+
return image, top_1, rounded_up_score, question, accept_reject
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def preprocessing(data, type_of_nns, current_index, history, username):
|
| 142 |
+
print("preprocessing")
|
| 143 |
+
data = generate_data(type_of_nns)
|
| 144 |
+
print("data generated")
|
| 145 |
+
|
| 146 |
+
# append a random text to the username
|
| 147 |
+
random_text = "".join(
|
| 148 |
+
random.choice(string.ascii_lowercase + string.digits) for _ in range(8)
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
if username == "":
|
| 152 |
+
username = "username"
|
| 153 |
+
|
| 154 |
+
username = f"{username}-{random_text}"
|
| 155 |
+
|
| 156 |
+
current_index = 0
|
| 157 |
+
print("loading sample ....")
|
| 158 |
+
qimage, top_1, top_1_score, question, accept_reject = load_sample(
|
| 159 |
+
data, current_index
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
return (
|
| 163 |
+
qimage,
|
| 164 |
+
top_1,
|
| 165 |
+
top_1_score,
|
| 166 |
+
question,
|
| 167 |
+
accept_reject,
|
| 168 |
+
current_index,
|
| 169 |
+
history,
|
| 170 |
+
data,
|
| 171 |
+
username,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def update_app(decision, data, current_index, history, username):
|
| 176 |
+
global NUMBER_OF_IMAGES
|
| 177 |
+
if current_index == -1:
|
| 178 |
+
gr.Error("Please Enter your username and load samples")
|
| 179 |
+
|
| 180 |
+
fake_plot = string_to_image("Please Enter your username and load samples")
|
| 181 |
+
canvas = agg.FigureCanvasAgg(fake_plot)
|
| 182 |
+
canvas.draw()
|
| 183 |
+
empty_image = Image.frombytes(
|
| 184 |
+
"RGBA", canvas.get_width_height(), canvas.tostring_argb()
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
return (
|
| 188 |
+
empty_image,
|
| 189 |
+
"",
|
| 190 |
+
"",
|
| 191 |
+
"",
|
| 192 |
+
"",
|
| 193 |
+
current_index,
|
| 194 |
+
history,
|
| 195 |
+
data,
|
| 196 |
+
0,
|
| 197 |
+
gr.update(interactive=False),
|
| 198 |
+
gr.update(interactive=False),
|
| 199 |
+
"",
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# Done, let's save and upload
|
| 203 |
+
if current_index == NUMBER_OF_IMAGES - 1:
|
| 204 |
+
time_stamp = int(time.time())
|
| 205 |
+
|
| 206 |
+
# Add decision to the history
|
| 207 |
+
current_dicitonary = data[current_index].copy()
|
| 208 |
+
current_dicitonary["user_decision"] = decision
|
| 209 |
+
current_dicitonary["user_id"] = username
|
| 210 |
+
accept_reject_string = "Accept" if decision == "YES" else "Reject"
|
| 211 |
+
current_dicitonary["is_user_correct"] = (
|
| 212 |
+
current_dicitonary["Accept/Reject"] == accept_reject_string
|
| 213 |
+
)
|
| 214 |
+
history.append(current_dicitonary)
|
| 215 |
+
|
| 216 |
+
# convert to percentage
|
| 217 |
+
final_decision_data = {
|
| 218 |
+
"user_id": username,
|
| 219 |
+
"time": time_stamp,
|
| 220 |
+
"history": history,
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
# upload the decision to the server
|
| 224 |
+
temp_filename = f"./responses/results_{username}.json"
|
| 225 |
+
# convert decision_dict to json and save it on the disk
|
| 226 |
+
with open(temp_filename, "w") as f:
|
| 227 |
+
json.dump(final_decision_data, f)
|
| 228 |
+
|
| 229 |
+
fake_plot = string_to_image("Thank you for your time!")
|
| 230 |
+
canvas = agg.FigureCanvasAgg(fake_plot)
|
| 231 |
+
canvas.draw()
|
| 232 |
+
empty_image = Image.frombytes(
|
| 233 |
+
"RGBA", canvas.get_width_height(), canvas.tostring_argb()
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# TODO, Call the accuracy and show it to the user
|
| 237 |
+
# calcualte the mean of is_user_correct
|
| 238 |
+
all_is_user_correct = [d["is_user_correct"] for d in history]
|
| 239 |
+
accuracy = np.mean(all_is_user_correct) * 100
|
| 240 |
+
accuracy = round(accuracy, 2)
|
| 241 |
+
|
| 242 |
+
return (
|
| 243 |
+
empty_image,
|
| 244 |
+
"",
|
| 245 |
+
"",
|
| 246 |
+
"",
|
| 247 |
+
"",
|
| 248 |
+
current_index,
|
| 249 |
+
history,
|
| 250 |
+
data,
|
| 251 |
+
current_index + 1,
|
| 252 |
+
gr.update(interactive=False),
|
| 253 |
+
gr.update(interactive=False),
|
| 254 |
+
f"User Accuracy: {accuracy}",
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if current_index >= 0 and current_index < NUMBER_OF_IMAGES - 1:
|
| 258 |
+
current_dicitonary = data[current_index].copy()
|
| 259 |
+
current_dicitonary["user_decision"] = decision
|
| 260 |
+
current_dicitonary["user_id"] = username
|
| 261 |
+
accept_reject_string = True if decision == "YES" else False
|
| 262 |
+
current_dicitonary["is_user_correct"] = (
|
| 263 |
+
current_dicitonary["Accept/Reject"] == accept_reject_string
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
print(f" accept/reject : {current_dicitonary['Accept/Reject'] }")
|
| 267 |
+
print(
|
| 268 |
+
f" accept/reject status: {current_dicitonary['Accept/Reject'] == accept_reject_string}"
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
history.append(current_dicitonary)
|
| 272 |
+
|
| 273 |
+
current_index += 1
|
| 274 |
+
qimage, top_1, top_1_score, question, accept_reject = load_sample(
|
| 275 |
+
data, current_index
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
return (
|
| 279 |
+
qimage,
|
| 280 |
+
top_1,
|
| 281 |
+
top_1_score,
|
| 282 |
+
question,
|
| 283 |
+
accept_reject,
|
| 284 |
+
current_index,
|
| 285 |
+
history,
|
| 286 |
+
data,
|
| 287 |
+
current_index,
|
| 288 |
+
gr.update(interactive=True),
|
| 289 |
+
gr.update(interactive=True),
|
| 290 |
+
"",
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def disable_component():
|
| 295 |
+
return gr.update(interactive=False)
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def enable_component():
|
| 299 |
+
return gr.update(interactive=True)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def hide_component():
|
| 303 |
+
return gr.update(visible=False)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 307 |
+
data_state = gr.State({})
|
| 308 |
+
current_index = gr.State(-1)
|
| 309 |
+
history = gr.State([])
|
| 310 |
+
|
| 311 |
+
gr.Markdown("# Advising Networks")
|
| 312 |
+
gr.Markdown("## Accept/Reject AI predicted label using Explanations")
|
| 313 |
+
|
| 314 |
+
with gr.Column():
|
| 315 |
+
with gr.Row():
|
| 316 |
+
username_textbox = gr.Textbox(label="Username", value=f"username")
|
| 317 |
+
labeled_images_textbox = gr.Textbox(label="Labeled Images", value="0")
|
| 318 |
+
total_images_textbox = gr.Textbox(
|
| 319 |
+
label="Total Images", value=NUMBER_OF_IMAGES
|
| 320 |
+
)
|
| 321 |
+
type_of_nns_dropdown = gr.Dropdown(
|
| 322 |
+
label="Type of NNs",
|
| 323 |
+
choices=["top1", "topK"],
|
| 324 |
+
value="top1",
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
prepare_btn = gr.Button(value="Start The Experiment")
|
| 328 |
+
|
| 329 |
+
with gr.Column():
|
| 330 |
+
with gr.Row():
|
| 331 |
+
question_textbox = gr.HTML("")
|
| 332 |
+
# question_textbox = gr.Markdown("")
|
| 333 |
+
|
| 334 |
+
with gr.Column(elem_id="parent_row"):
|
| 335 |
+
query_image = gr.Image(
|
| 336 |
+
type="pil", label="Query", show_label=False, value="./images/intro.jpg"
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
with gr.Row():
|
| 340 |
+
accept_btn = gr.Button(value="YES", interactive=False)
|
| 341 |
+
reject_btn = gr.Button(value="NO", interactive=False)
|
| 342 |
+
|
| 343 |
+
with gr.Column(elem_id="parent_row"):
|
| 344 |
+
top_1_textbox = gr.Textbox(label="Top 1", value="", visible=False)
|
| 345 |
+
top_1_score_textbox = gr.Textbox(
|
| 346 |
+
label="Top 1 Score", value="", visible=False
|
| 347 |
+
)
|
| 348 |
+
accept_reject_textbox = gr.Textbox(
|
| 349 |
+
label="Accept/Reject", value="", visible=False
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
with gr.Column():
|
| 353 |
+
with gr.Row():
|
| 354 |
+
final_results = gr.HTML("")
|
| 355 |
+
|
| 356 |
+
# data, type_of_nns, current_index, history
|
| 357 |
+
prepare_btn.click(
|
| 358 |
+
preprocessing,
|
| 359 |
+
inputs=[
|
| 360 |
+
data_state,
|
| 361 |
+
type_of_nns_dropdown,
|
| 362 |
+
current_index,
|
| 363 |
+
history,
|
| 364 |
+
username_textbox,
|
| 365 |
+
],
|
| 366 |
+
outputs=[
|
| 367 |
+
query_image,
|
| 368 |
+
top_1_textbox,
|
| 369 |
+
top_1_score_textbox,
|
| 370 |
+
question_textbox,
|
| 371 |
+
accept_reject_textbox,
|
| 372 |
+
current_index,
|
| 373 |
+
history,
|
| 374 |
+
data_state,
|
| 375 |
+
username_textbox,
|
| 376 |
+
],
|
| 377 |
+
).then(fn=disable_component, outputs=[prepare_btn]).then(
|
| 378 |
+
fn=disable_component, outputs=[type_of_nns_dropdown]
|
| 379 |
+
).then(
|
| 380 |
+
fn=disable_component, outputs=[username_textbox]
|
| 381 |
+
).then(
|
| 382 |
+
fn=disable_component, outputs=[prepare_btn]
|
| 383 |
+
).then(
|
| 384 |
+
fn=enable_component, outputs=[accept_btn]
|
| 385 |
+
).then(
|
| 386 |
+
fn=enable_component, outputs=[reject_btn]
|
| 387 |
+
).then(
|
| 388 |
+
fn=hide_component, outputs=[prepare_btn]
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
accept_btn.click(
|
| 392 |
+
update_app,
|
| 393 |
+
inputs=[accept_btn, data_state, current_index, history, username_textbox],
|
| 394 |
+
outputs=[
|
| 395 |
+
query_image,
|
| 396 |
+
top_1_textbox,
|
| 397 |
+
top_1_score_textbox,
|
| 398 |
+
question_textbox,
|
| 399 |
+
accept_reject_textbox,
|
| 400 |
+
current_index,
|
| 401 |
+
history,
|
| 402 |
+
data_state,
|
| 403 |
+
labeled_images_textbox,
|
| 404 |
+
accept_btn,
|
| 405 |
+
reject_btn,
|
| 406 |
+
final_results,
|
| 407 |
+
],
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
reject_btn.click(
|
| 411 |
+
update_app,
|
| 412 |
+
inputs=[reject_btn, data_state, current_index, history, username_textbox],
|
| 413 |
+
outputs=[
|
| 414 |
+
query_image,
|
| 415 |
+
top_1_textbox,
|
| 416 |
+
top_1_score_textbox,
|
| 417 |
+
question_textbox,
|
| 418 |
+
accept_reject_textbox,
|
| 419 |
+
current_index,
|
| 420 |
+
history,
|
| 421 |
+
data_state,
|
| 422 |
+
labeled_images_textbox,
|
| 423 |
+
accept_btn,
|
| 424 |
+
reject_btn,
|
| 425 |
+
final_results,
|
| 426 |
+
],
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
demo.launch(debug=False, server_name="0.0.0.0")
|
| 431 |
+
# demo.launch(debug=False)
|
images/intro.jpg
ADDED
|
showresults.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from glob import glob
|
| 2 |
+
import json
|
| 3 |
+
import numpy as np
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def calculate_the_results():
|
| 9 |
+
all_jsons_path = glob('./responses/*.json')
|
| 10 |
+
all_jsons = [json.load(open(path)) for path in all_jsons_path]
|
| 11 |
+
|
| 12 |
+
# count number of user corrects for each json and average and also calcaulte the type of NNs
|
| 13 |
+
|
| 14 |
+
top1_results = []
|
| 15 |
+
top1_acc = []
|
| 16 |
+
topK_results = []
|
| 17 |
+
topK_acc = []
|
| 18 |
+
|
| 19 |
+
for js in all_jsons:
|
| 20 |
+
# read one key and determine the type of NN
|
| 21 |
+
type_of_NNs = js['history'][0]['type']
|
| 22 |
+
if type_of_NNs == 'topK':
|
| 23 |
+
acc = np.mean([js['history'][x]['is_user_correct'] for x in range(len(js['history']))])
|
| 24 |
+
topK_acc.append((acc*100).round(2))
|
| 25 |
+
topK_results.append(js)
|
| 26 |
+
|
| 27 |
+
else:
|
| 28 |
+
top1_results.append(js)
|
| 29 |
+
acc = np.mean([js['history'][x]['is_user_correct'] for x in range(len(js['history']))])
|
| 30 |
+
top1_acc.append((acc*100).round(2))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
print('# of top1: ', len(top1_results))
|
| 34 |
+
print('top1 Accuracy: ', top1_acc)
|
| 35 |
+
# print std and mean of top1_acc
|
| 36 |
+
std = np.std(top1_acc)
|
| 37 |
+
mean = np.mean(top1_acc)
|
| 38 |
+
|
| 39 |
+
print('top1 std: ', std)
|
| 40 |
+
print('top1 mean: ', mean)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
print('----------------------------------')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
print('# of topK: ', len(topK_results))
|
| 49 |
+
print('topK Accuracy: ', topK_acc)
|
| 50 |
+
|
| 51 |
+
std = np.std(topK_acc)
|
| 52 |
+
mean = np.mean(topK_acc)
|
| 53 |
+
|
| 54 |
+
print('topK std: ', std)
|
| 55 |
+
print('topK mean: ', mean)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def calculate_the_results():
|
| 61 |
+
all_jsons_path = glob('./responses/*.json')
|
| 62 |
+
all_jsons = [json.load(open(path)) for path in all_jsons_path]
|
| 63 |
+
|
| 64 |
+
# count number of user corrects for each json and average and also calculate the type of NNs
|
| 65 |
+
|
| 66 |
+
top1_results = []
|
| 67 |
+
top1_acc = []
|
| 68 |
+
topK_results = []
|
| 69 |
+
topK_acc = []
|
| 70 |
+
|
| 71 |
+
for js in all_jsons:
|
| 72 |
+
# read one key and determine the type of NN
|
| 73 |
+
type_of_NNs = js['history'][0]['type']
|
| 74 |
+
if type_of_NNs == 'topK':
|
| 75 |
+
acc = np.mean([js['history'][x]['is_user_correct'] for x in range(len(js['history']))])
|
| 76 |
+
topK_acc.append((acc*100).round(2))
|
| 77 |
+
topK_results.append(js)
|
| 78 |
+
else:
|
| 79 |
+
top1_results.append(js)
|
| 80 |
+
acc = np.mean([js['history'][x]['is_user_correct'] for x in range(len(js['history']))])
|
| 81 |
+
top1_acc.append((acc*100).round(2))
|
| 82 |
+
|
| 83 |
+
top1_output = f"# of top1: {len(top1_results)}\ntop1 Accuracy: {top1_acc}\ntop1 std: {np.std(top1_acc)}\ntop1 mean: {np.mean(top1_acc)}\n----------------------------------\n"
|
| 84 |
+
topK_output = f"# of topK: {len(topK_results)}\ntopK Accuracy: {topK_acc}\ntopK std: {np.std(topK_acc)}\ntopK mean: {np.mean(topK_acc)}"
|
| 85 |
+
|
| 86 |
+
return top1_output + topK_output
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 90 |
+
update_btn = gr.Button("Calculate the results")
|
| 91 |
+
results_textbox = gr.Textbox(lines=10, label="Results")
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
update_btn.click(fn=calculate_the_results, outputs=results_textbox)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
demo.launch(debug=False, server_name="0.0.0.0", server_port=9911)
|
utils.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def string_to_image(text):
|
| 6 |
+
text = text.replace("_", " ").lower().replace(", ", "\n")
|
| 7 |
+
# Create a blank white square image
|
| 8 |
+
img = np.ones((220, 75, 3))
|
| 9 |
+
|
| 10 |
+
fig, ax = plt.subplots(figsize=(6, 2.25))
|
| 11 |
+
ax.imshow(img, extent=[0, 1, 0, 1])
|
| 12 |
+
ax.text(0.5, 0.75, text, fontsize=18, ha="center", va="center")
|
| 13 |
+
ax.set_xticks([])
|
| 14 |
+
ax.set_yticks([])
|
| 15 |
+
ax.set_xticklabels([])
|
| 16 |
+
ax.set_yticklabels([])
|
| 17 |
+
for spine in ax.spines.values():
|
| 18 |
+
spine.set_visible(False)
|
| 19 |
+
|
| 20 |
+
return fig
|