Spaces:
Running
Running
Commit
·
97a3613
1
Parent(s):
551788c
update 1.0
Browse files- Dockerfile +23 -9
- app.py +95 -20
Dockerfile
CHANGED
|
@@ -1,6 +1,11 @@
|
|
| 1 |
# Use official Python slim image
|
| 2 |
FROM python:3.11-slim
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
# Create a non-root user
|
| 5 |
RUN useradd -m -u 1000 user
|
| 6 |
USER user
|
|
@@ -9,16 +14,25 @@ ENV PATH="/home/user/.local/bin:$PATH"
|
|
| 9 |
# Set working directory
|
| 10 |
WORKDIR /app
|
| 11 |
|
| 12 |
-
# Copy
|
| 13 |
-
COPY --chown=user
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
# Copy
|
| 18 |
-
COPY --chown=user .
|
| 19 |
|
| 20 |
-
#
|
|
|
|
|
|
|
|
|
|
| 21 |
EXPOSE 7860
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Use official Python slim image
|
| 2 |
FROM python:3.11-slim
|
| 3 |
|
| 4 |
+
# Install system dependencies
|
| 5 |
+
RUN apt-get update && apt-get install -y \
|
| 6 |
+
curl \
|
| 7 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 8 |
+
|
| 9 |
# Create a non-root user
|
| 10 |
RUN useradd -m -u 1000 user
|
| 11 |
USER user
|
|
|
|
| 14 |
# Set working directory
|
| 15 |
WORKDIR /app
|
| 16 |
|
| 17 |
+
# Copy requirements first (for better caching)
|
| 18 |
+
COPY --chown=user requirements.txt .
|
| 19 |
+
|
| 20 |
+
# Install Python dependencies
|
| 21 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 22 |
+
pip install --no-cache-dir -r requirements.txt
|
| 23 |
|
| 24 |
+
# Copy application files
|
| 25 |
+
COPY --chown=user . .
|
| 26 |
|
| 27 |
+
# Make sure the model file exists (you'll need to add this)
|
| 28 |
+
# COPY --chown=user best_model.pth .
|
| 29 |
+
|
| 30 |
+
# Expose port (Hugging Face Spaces typically uses 7860)
|
| 31 |
EXPOSE 7860
|
| 32 |
|
| 33 |
+
# Health check
|
| 34 |
+
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
| 35 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
| 36 |
+
|
| 37 |
+
# Run the application
|
| 38 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1", "--log-level", "info"]
|
app.py
CHANGED
|
@@ -1,42 +1,117 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import tempfile
|
| 3 |
-
from fastapi import FastAPI, File, Form, UploadFile
|
| 4 |
from fastapi.responses import JSONResponse
|
| 5 |
-
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
predictor = SimilarityPredictor(MODEL_PATH, threshold=THRESHOLD)
|
| 11 |
|
| 12 |
app = FastAPI()
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
@app.post("/predict")
|
| 15 |
-
async def
|
| 16 |
file: UploadFile = File(...),
|
| 17 |
text: str = Form(...)
|
| 18 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
try:
|
| 20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
| 22 |
tmp_path = tmp.name
|
| 23 |
content = await file.read()
|
| 24 |
tmp.write(content)
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
# Run prediction
|
| 27 |
result = predictor.predict_similarity(tmp_path, text, verbose=False)
|
| 28 |
-
|
| 29 |
-
# Cleanup temp file
|
| 30 |
-
os.remove(tmp_path)
|
| 31 |
-
|
| 32 |
if result is None:
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
| 36 |
|
|
|
|
|
|
|
| 37 |
except Exception as e:
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import os
|
| 3 |
import tempfile
|
| 4 |
+
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
|
| 5 |
from fastapi.responses import JSONResponse
|
| 6 |
+
import logging
|
| 7 |
|
| 8 |
+
# Set up logging
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
| 10 |
+
logger = logging.getLogger(__name__)
|
|
|
|
| 11 |
|
| 12 |
app = FastAPI()
|
| 13 |
|
| 14 |
+
# Global predictor variable
|
| 15 |
+
predictor = None
|
| 16 |
+
|
| 17 |
+
@app.on_event("startup")
|
| 18 |
+
async def startup_event():
|
| 19 |
+
"""Initialize predictor on startup"""
|
| 20 |
+
global predictor
|
| 21 |
+
try:
|
| 22 |
+
from predictor import SimilarityPredictor
|
| 23 |
+
MODEL_PATH = os.getenv("MODEL_PATH", "best_model.pth")
|
| 24 |
+
THRESHOLD = float(os.getenv("THRESHOLD", "0.5"))
|
| 25 |
+
|
| 26 |
+
logger.info(f"Loading model from: {MODEL_PATH}")
|
| 27 |
+
logger.info(f"Using threshold: {THRESHOLD}")
|
| 28 |
+
|
| 29 |
+
predictor = SimilarityPredictor(MODEL_PATH, threshold=THRESHOLD)
|
| 30 |
+
logger.info("✅ Model loaded successfully!")
|
| 31 |
+
|
| 32 |
+
except Exception as e:
|
| 33 |
+
logger.error(f"❌ Failed to load model: {e}")
|
| 34 |
+
# Don't raise here - let the app start but handle in endpoints
|
| 35 |
+
|
| 36 |
+
@app.get("/")
|
| 37 |
+
async def root():
|
| 38 |
+
"""Root endpoint"""
|
| 39 |
+
return {
|
| 40 |
+
"message": "Image-Text Similarity API is running",
|
| 41 |
+
"endpoints": {
|
| 42 |
+
"GET /": "This endpoint",
|
| 43 |
+
"GET /health": "Health check",
|
| 44 |
+
"POST /predict": "Predict similarity between image and text"
|
| 45 |
+
}
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
@app.get("/health")
|
| 49 |
+
async def health_check():
|
| 50 |
+
"""Health check endpoint"""
|
| 51 |
+
global predictor
|
| 52 |
+
return {
|
| 53 |
+
"status": "healthy" if predictor is not None else "model_not_loaded",
|
| 54 |
+
"model_loaded": predictor is not None
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
@app.post("/predict")
|
| 58 |
+
async def predict_similarity(
|
| 59 |
file: UploadFile = File(...),
|
| 60 |
text: str = Form(...)
|
| 61 |
):
|
| 62 |
+
"""Predict similarity between uploaded image and text"""
|
| 63 |
+
global predictor
|
| 64 |
+
|
| 65 |
+
if predictor is None:
|
| 66 |
+
raise HTTPException(
|
| 67 |
+
status_code=503,
|
| 68 |
+
detail="Model not loaded. Check logs for initialization errors."
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
tmp_path = None
|
| 72 |
try:
|
| 73 |
+
# Validate file type
|
| 74 |
+
if not file.content_type.startswith('image/'):
|
| 75 |
+
raise HTTPException(
|
| 76 |
+
status_code=400,
|
| 77 |
+
detail=f"Invalid file type: {file.content_type}. Please upload an image."
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Create temporary file
|
| 81 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
| 82 |
tmp_path = tmp.name
|
| 83 |
content = await file.read()
|
| 84 |
tmp.write(content)
|
| 85 |
+
|
| 86 |
+
logger.info(f"Processing image: {file.filename}, text: {text[:50]}...")
|
| 87 |
+
|
| 88 |
# Run prediction
|
| 89 |
result = predictor.predict_similarity(tmp_path, text, verbose=False)
|
| 90 |
+
|
|
|
|
|
|
|
|
|
|
| 91 |
if result is None:
|
| 92 |
+
raise HTTPException(status_code=500, detail="Prediction failed")
|
| 93 |
+
|
| 94 |
+
logger.info(f"Prediction completed: {result['prediction']}")
|
| 95 |
+
return result
|
| 96 |
|
| 97 |
+
except HTTPException:
|
| 98 |
+
raise
|
| 99 |
except Exception as e:
|
| 100 |
+
logger.error(f"Prediction error: {e}")
|
| 101 |
+
raise HTTPException(status_code=500, detail=f"Prediction failed: {str(e)}")
|
| 102 |
+
|
| 103 |
+
finally:
|
| 104 |
+
# Cleanup temp file
|
| 105 |
+
if tmp_path and os.path.exists(tmp_path):
|
| 106 |
+
try:
|
| 107 |
+
os.remove(tmp_path)
|
| 108 |
+
except Exception as e:
|
| 109 |
+
logger.warning(f"Failed to cleanup temp file: {e}")
|
| 110 |
|
| 111 |
+
# Add middleware for better error handling
|
| 112 |
+
@app.middleware("http")
|
| 113 |
+
async def log_requests(request, call_next):
|
| 114 |
+
logger.info(f"{request.method} {request.url}")
|
| 115 |
+
response = await call_next(request)
|
| 116 |
+
logger.info(f"Response status: {response.status_code}")
|
| 117 |
+
return response
|