Spaces:
Runtime error
Runtime error
| from typing import Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...modeling_utils import ModelMixin | |
| from ...models.attention import DualTransformer2DModel, Transformer2DModel | |
| from ...models.embeddings import TimestepEmbedding, Timesteps | |
| from ...models.unet_2d_condition import UNet2DConditionOutput | |
| from ...utils import logging | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def get_down_block( | |
| down_block_type, | |
| num_layers, | |
| in_channels, | |
| out_channels, | |
| temb_channels, | |
| add_downsample, | |
| resnet_eps, | |
| resnet_act_fn, | |
| attn_num_head_channels, | |
| resnet_groups=None, | |
| cross_attention_dim=None, | |
| downsample_padding=None, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| ): | |
| down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | |
| if down_block_type == "DownBlockFlat": | |
| return DownBlockFlat( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| ) | |
| elif down_block_type == "CrossAttnDownBlockFlat": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockFlat") | |
| return CrossAttnDownBlockFlat( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attn_num_head_channels, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| ) | |
| raise ValueError(f"{down_block_type} is not supported.") | |
| def get_up_block( | |
| up_block_type, | |
| num_layers, | |
| in_channels, | |
| out_channels, | |
| prev_output_channel, | |
| temb_channels, | |
| add_upsample, | |
| resnet_eps, | |
| resnet_act_fn, | |
| attn_num_head_channels, | |
| resnet_groups=None, | |
| cross_attention_dim=None, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| ): | |
| up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
| if up_block_type == "UpBlockFlat": | |
| return UpBlockFlat( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| ) | |
| elif up_block_type == "CrossAttnUpBlockFlat": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockFlat") | |
| return CrossAttnUpBlockFlat( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attn_num_head_channels, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| ) | |
| raise ValueError(f"{up_block_type} is not supported.") | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel with UNet2DConditionModel->UNetFlatConditionModel, nn.Conv2d->LinearMultiDim, Block2D->BlockFlat | |
| class UNetFlatConditionModel(ModelMixin, ConfigMixin): | |
| r""" | |
| UNetFlatConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a | |
| timestep and returns sample shaped output. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
| implements for all the models (such as downloading or saving, etc.) | |
| Parameters: | |
| sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
| Height and width of input/output sample. | |
| in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. | |
| out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. | |
| center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | |
| flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | |
| Whether to flip the sin to cos in the time embedding. | |
| freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "DownBlockFlat")`): | |
| The tuple of downsample blocks to use. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat",)`): | |
| The tuple of upsample blocks to use. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
| downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
| mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
| norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
| norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
| cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. | |
| attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 4, | |
| out_channels: int = 4, | |
| center_input_sample: bool = False, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlockFlat", | |
| "CrossAttnDownBlockFlat", | |
| "CrossAttnDownBlockFlat", | |
| "DownBlockFlat", | |
| ), | |
| up_block_types: Tuple[str] = ( | |
| "UpBlockFlat", | |
| "CrossAttnUpBlockFlat", | |
| "CrossAttnUpBlockFlat", | |
| "CrossAttnUpBlockFlat", | |
| ), | |
| only_cross_attention: Union[bool, Tuple[bool]] = False, | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: int = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: int = 1280, | |
| attention_head_dim: Union[int, Tuple[int]] = 8, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| num_class_embeds: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| self.sample_size = sample_size | |
| time_embed_dim = block_out_channels[0] * 4 | |
| # input | |
| self.conv_in = LinearMultiDim(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) | |
| # time | |
| self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| # class embedding | |
| if num_class_embeds is not None: | |
| self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.mid_block = None | |
| self.up_blocks = nn.ModuleList([]) | |
| if isinstance(only_cross_attention, bool): | |
| only_cross_attention = [only_cross_attention] * len(down_block_types) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[i], | |
| downsample_padding=downsample_padding, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| self.mid_block = UNetMidBlockFlatCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=time_embed_dim, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| resnet_time_scale_shift="default", | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[-1], | |
| resnet_groups=norm_num_groups, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| ) | |
| # count how many layers upsample the images | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
| only_cross_attention = list(reversed(only_cross_attention)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| is_final_block = i == len(block_out_channels) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=layers_per_block + 1, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=time_embed_dim, | |
| add_upsample=add_upsample, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=reversed_attention_head_dim[i], | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = LinearMultiDim(block_out_channels[0], out_channels, kernel_size=3, padding=1) | |
| def set_attention_slice(self, slice_size): | |
| head_dims = self.config.attention_head_dim | |
| head_dims = [head_dims] if isinstance(head_dims, int) else head_dims | |
| if slice_size is not None and any(dim % slice_size != 0 for dim in head_dims): | |
| raise ValueError( | |
| f"Make sure slice_size {slice_size} is a common divisor of " | |
| f"the number of heads used in cross_attention: {head_dims}" | |
| ) | |
| if slice_size is not None and slice_size > min(head_dims): | |
| raise ValueError( | |
| f"slice_size {slice_size} has to be smaller or equal to " | |
| f"the lowest number of heads used in cross_attention: min({head_dims}) = {min(head_dims)}" | |
| ) | |
| for block in self.down_blocks: | |
| if hasattr(block, "attentions") and block.attentions is not None: | |
| block.set_attention_slice(slice_size) | |
| self.mid_block.set_attention_slice(slice_size) | |
| for block in self.up_blocks: | |
| if hasattr(block, "attentions") and block.attentions is not None: | |
| block.set_attention_slice(slice_size) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (CrossAttnDownBlockFlat, DownBlockFlat, CrossAttnUpBlockFlat, UpBlockFlat)): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| class_labels: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[UNet2DConditionOutput, Tuple]: | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
| timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
| encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
| [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
| returning a tuple, the first element is the sample tensor. | |
| """ | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2**self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # 0. center input if necessary | |
| if self.config.center_input_sample: | |
| sample = 2 * sample - 1.0 | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=self.dtype) | |
| emb = self.time_embedding(t_emb) | |
| if self.config.num_class_embeds is not None: | |
| if class_labels is None: | |
| raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
| class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
| emb = emb + class_emb | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states) | |
| # 5. up | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| upsample_size=upsample_size, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
| ) | |
| # 6. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| if not return_dict: | |
| return (sample,) | |
| return UNet2DConditionOutput(sample=sample) | |
| class LinearMultiDim(nn.Linear): | |
| def __init__(self, in_features, out_features=None, second_dim=4, *args, **kwargs): | |
| in_features = [in_features, second_dim, 1] if isinstance(in_features, int) else list(in_features) | |
| if out_features is None: | |
| out_features = in_features | |
| out_features = [out_features, second_dim, 1] if isinstance(out_features, int) else list(out_features) | |
| self.in_features_multidim = in_features | |
| self.out_features_multidim = out_features | |
| super().__init__(np.array(in_features).prod(), np.array(out_features).prod()) | |
| def forward(self, input_tensor, *args, **kwargs): | |
| shape = input_tensor.shape | |
| n_dim = len(self.in_features_multidim) | |
| input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_features) | |
| output_tensor = super().forward(input_tensor) | |
| output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_features_multidim) | |
| return output_tensor | |
| class ResnetBlockFlat(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| in_channels, | |
| out_channels=None, | |
| dropout=0.0, | |
| temb_channels=512, | |
| groups=32, | |
| groups_out=None, | |
| pre_norm=True, | |
| eps=1e-6, | |
| time_embedding_norm="default", | |
| use_in_shortcut=None, | |
| second_dim=4, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.pre_norm = pre_norm | |
| self.pre_norm = True | |
| in_channels = [in_channels, second_dim, 1] if isinstance(in_channels, int) else list(in_channels) | |
| self.in_channels_prod = np.array(in_channels).prod() | |
| self.channels_multidim = in_channels | |
| if out_channels is not None: | |
| out_channels = [out_channels, second_dim, 1] if isinstance(out_channels, int) else list(out_channels) | |
| out_channels_prod = np.array(out_channels).prod() | |
| self.out_channels_multidim = out_channels | |
| else: | |
| out_channels_prod = self.in_channels_prod | |
| self.out_channels_multidim = self.channels_multidim | |
| self.time_embedding_norm = time_embedding_norm | |
| if groups_out is None: | |
| groups_out = groups | |
| self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=self.in_channels_prod, eps=eps, affine=True) | |
| self.conv1 = torch.nn.Conv2d(self.in_channels_prod, out_channels_prod, kernel_size=1, padding=0) | |
| if temb_channels is not None: | |
| self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels_prod) | |
| else: | |
| self.time_emb_proj = None | |
| self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels_prod, eps=eps, affine=True) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| self.conv2 = torch.nn.Conv2d(out_channels_prod, out_channels_prod, kernel_size=1, padding=0) | |
| self.nonlinearity = nn.SiLU() | |
| self.use_in_shortcut = ( | |
| self.in_channels_prod != out_channels_prod if use_in_shortcut is None else use_in_shortcut | |
| ) | |
| self.conv_shortcut = None | |
| if self.use_in_shortcut: | |
| self.conv_shortcut = torch.nn.Conv2d( | |
| self.in_channels_prod, out_channels_prod, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def forward(self, input_tensor, temb): | |
| shape = input_tensor.shape | |
| n_dim = len(self.channels_multidim) | |
| input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_channels_prod, 1, 1) | |
| input_tensor = input_tensor.view(-1, self.in_channels_prod, 1, 1) | |
| hidden_states = input_tensor | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.conv1(hidden_states) | |
| if temb is not None: | |
| temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
| hidden_states = hidden_states + temb | |
| hidden_states = self.norm2(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| if self.conv_shortcut is not None: | |
| input_tensor = self.conv_shortcut(input_tensor) | |
| output_tensor = input_tensor + hidden_states | |
| output_tensor = output_tensor.view(*shape[0:-n_dim], -1) | |
| output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_channels_multidim) | |
| return output_tensor | |
| # Copied from diffusers.models.unet_2d_blocks.DownBlock2D with DownBlock2D->DownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim | |
| class DownBlockFlat(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor=1.0, | |
| add_downsample=True, | |
| downsample_padding=1, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlockFlat( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| LinearMultiDim( | |
| out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states, temb=None): | |
| output_states = () | |
| for resnet in self.resnets: | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| output_states += (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states += (hidden_states,) | |
| return hidden_states, output_states | |
| # Copied from diffusers.models.unet_2d_blocks.CrossAttnDownBlock2D with CrossAttnDownBlock2D->CrossAttnDownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim | |
| class CrossAttnDownBlockFlat(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| attn_num_head_channels=1, | |
| cross_attention_dim=1280, | |
| attention_type="default", | |
| output_scale_factor=1.0, | |
| downsample_padding=1, | |
| add_downsample=True, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| self.attention_type = attention_type | |
| self.attn_num_head_channels = attn_num_head_channels | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlockFlat( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| if not dual_cross_attention: | |
| attentions.append( | |
| Transformer2DModel( | |
| attn_num_head_channels, | |
| out_channels // attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| ) | |
| ) | |
| else: | |
| attentions.append( | |
| DualTransformer2DModel( | |
| attn_num_head_channels, | |
| out_channels // attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| LinearMultiDim( | |
| out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def set_attention_slice(self, slice_size): | |
| head_dims = self.attn_num_head_channels | |
| head_dims = [head_dims] if isinstance(head_dims, int) else head_dims | |
| if slice_size is not None and any(dim % slice_size != 0 for dim in head_dims): | |
| raise ValueError( | |
| f"Make sure slice_size {slice_size} is a common divisor of " | |
| f"the number of heads used in cross_attention: {head_dims}" | |
| ) | |
| if slice_size is not None and slice_size > min(head_dims): | |
| raise ValueError( | |
| f"slice_size {slice_size} has to be smaller or equal to " | |
| f"the lowest number of heads used in cross_attention: min({head_dims}) = {min(head_dims)}" | |
| ) | |
| for attn in self.attentions: | |
| attn._set_attention_slice(slice_size) | |
| def forward(self, hidden_states, temb=None, encoder_hidden_states=None): | |
| output_states = () | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample | |
| output_states += (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states += (hidden_states,) | |
| return hidden_states, output_states | |
| # Copied from diffusers.models.unet_2d_blocks.UpBlock2D with UpBlock2D->UpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim | |
| class UpBlockFlat(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| prev_output_channel: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor=1.0, | |
| add_upsample=True, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlockFlat( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
| for resnet in self.resnets: | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| # Copied from diffusers.models.unet_2d_blocks.CrossAttnUpBlock2D with CrossAttnUpBlock2D->CrossAttnUpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim | |
| class CrossAttnUpBlockFlat(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| attn_num_head_channels=1, | |
| cross_attention_dim=1280, | |
| attention_type="default", | |
| output_scale_factor=1.0, | |
| add_upsample=True, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| self.attention_type = attention_type | |
| self.attn_num_head_channels = attn_num_head_channels | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlockFlat( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| if not dual_cross_attention: | |
| attentions.append( | |
| Transformer2DModel( | |
| attn_num_head_channels, | |
| out_channels // attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| ) | |
| ) | |
| else: | |
| attentions.append( | |
| DualTransformer2DModel( | |
| attn_num_head_channels, | |
| out_channels // attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| def set_attention_slice(self, slice_size): | |
| head_dims = self.attn_num_head_channels | |
| head_dims = [head_dims] if isinstance(head_dims, int) else head_dims | |
| if slice_size is not None and any(dim % slice_size != 0 for dim in head_dims): | |
| raise ValueError( | |
| f"Make sure slice_size {slice_size} is a common divisor of " | |
| f"the number of heads used in cross_attention: {head_dims}" | |
| ) | |
| if slice_size is not None and slice_size > min(head_dims): | |
| raise ValueError( | |
| f"slice_size {slice_size} has to be smaller or equal to " | |
| f"the lowest number of heads used in cross_attention: min({head_dims}) = {min(head_dims)}" | |
| ) | |
| for attn in self.attentions: | |
| attn._set_attention_slice(slice_size) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states, | |
| res_hidden_states_tuple, | |
| temb=None, | |
| encoder_hidden_states=None, | |
| upsample_size=None, | |
| ): | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| # Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DCrossAttn with UNetMidBlock2DCrossAttn->UNetMidBlockFlatCrossAttn, ResnetBlock2D->ResnetBlockFlat | |
| class UNetMidBlockFlatCrossAttn(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| attn_num_head_channels=1, | |
| attention_type="default", | |
| output_scale_factor=1.0, | |
| cross_attention_dim=1280, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| ): | |
| super().__init__() | |
| self.attention_type = attention_type | |
| self.attn_num_head_channels = attn_num_head_channels | |
| resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
| # there is always at least one resnet | |
| resnets = [ | |
| ResnetBlockFlat( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ] | |
| attentions = [] | |
| for _ in range(num_layers): | |
| if not dual_cross_attention: | |
| attentions.append( | |
| Transformer2DModel( | |
| attn_num_head_channels, | |
| in_channels // attn_num_head_channels, | |
| in_channels=in_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| ) | |
| ) | |
| else: | |
| attentions.append( | |
| DualTransformer2DModel( | |
| attn_num_head_channels, | |
| in_channels // attn_num_head_channels, | |
| in_channels=in_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| ) | |
| ) | |
| resnets.append( | |
| ResnetBlockFlat( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| def set_attention_slice(self, slice_size): | |
| head_dims = self.attn_num_head_channels | |
| head_dims = [head_dims] if isinstance(head_dims, int) else head_dims | |
| if slice_size is not None and any(dim % slice_size != 0 for dim in head_dims): | |
| raise ValueError( | |
| f"Make sure slice_size {slice_size} is a common divisor of " | |
| f"the number of heads used in cross_attention: {head_dims}" | |
| ) | |
| if slice_size is not None and slice_size > min(head_dims): | |
| raise ValueError( | |
| f"slice_size {slice_size} has to be smaller or equal to " | |
| f"the lowest number of heads used in cross_attention: min({head_dims}) = {min(head_dims)}" | |
| ) | |
| for attn in self.attentions: | |
| attn._set_attention_slice(slice_size) | |
| def forward(self, hidden_states, temb=None, encoder_hidden_states=None): | |
| hidden_states = self.resnets[0](hidden_states, temb) | |
| for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
| hidden_states = attn(hidden_states, encoder_hidden_states).sample | |
| hidden_states = resnet(hidden_states, temb) | |
| return hidden_states | |