Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
0f41ba2
1
Parent(s):
805a8bb
Adding app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from omegaconf import OmegaConf
|
| 8 |
+
from pytorch_lightning import seed_everything
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
from shap_e.diffusion.sample import sample_latents
|
| 13 |
+
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
|
| 14 |
+
from shap_e.models.download import load_model, load_config
|
| 15 |
+
from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, create_custom_cameras
|
| 16 |
+
|
| 17 |
+
from src.utils.train_util import instantiate_from_config
|
| 18 |
+
from src.utils.camera_util import (
|
| 19 |
+
FOV_to_intrinsics,
|
| 20 |
+
get_zero123plus_input_cameras,
|
| 21 |
+
get_circular_camera_poses,
|
| 22 |
+
spherical_camera_pose
|
| 23 |
+
)
|
| 24 |
+
from src.utils.mesh_util import save_obj, save_glb
|
| 25 |
+
from src.utils.infer_util import remove_background, resize_foreground
|
| 26 |
+
|
| 27 |
+
def load_models():
|
| 28 |
+
"""Initialize and load all required models"""
|
| 29 |
+
config = OmegaConf.load('configs/instant-nerf-large-best.yaml')
|
| 30 |
+
model_config = config.model_config
|
| 31 |
+
infer_config = config.infer_config
|
| 32 |
+
|
| 33 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 34 |
+
|
| 35 |
+
# Load diffusion pipeline
|
| 36 |
+
print('Loading diffusion pipeline...')
|
| 37 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 38 |
+
"sudo-ai/zero123plus-v1.2",
|
| 39 |
+
custom_pipeline="zero123plus",
|
| 40 |
+
torch_dtype=torch.float16
|
| 41 |
+
)
|
| 42 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 43 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Modify UNet to handle 8 input channels instead of 4
|
| 47 |
+
in_channels = 8
|
| 48 |
+
out_channels = pipeline.unet.conv_in.out_channels
|
| 49 |
+
pipeline.unet.register_to_config(in_channels=in_channels)
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
new_conv_in = nn.Conv2d(
|
| 52 |
+
in_channels, out_channels, pipeline.unet.conv_in.kernel_size,
|
| 53 |
+
pipeline.unet.conv_in.stride, pipeline.unet.conv_in.padding
|
| 54 |
+
)
|
| 55 |
+
new_conv_in.weight.zero_()
|
| 56 |
+
new_conv_in.weight[:, :4, :, :].copy_(pipeline.unet.conv_in.weight)
|
| 57 |
+
pipeline.unet.conv_in = new_conv_in
|
| 58 |
+
|
| 59 |
+
# Load custom UNet
|
| 60 |
+
print('Loading custom UNet...')
|
| 61 |
+
unet_path = "best_21.ckpt"
|
| 62 |
+
state_dict = torch.load(unet_path, map_location='cpu')
|
| 63 |
+
|
| 64 |
+
# Process the state dict to match the model keys
|
| 65 |
+
if 'state_dict' in state_dict:
|
| 66 |
+
new_state_dict = {key.replace('unet.unet.', ''): value for key, value in state_dict['state_dict'].items()}
|
| 67 |
+
pipeline.unet.load_state_dict(new_state_dict, strict=False)
|
| 68 |
+
else:
|
| 69 |
+
pipeline.unet.load_state_dict(state_dict, strict=False)
|
| 70 |
+
|
| 71 |
+
pipeline = pipeline.to(device).to(torch_dtype=torch.float16)
|
| 72 |
+
|
| 73 |
+
# Load reconstruction model
|
| 74 |
+
print('Loading reconstruction model...')
|
| 75 |
+
model = instantiate_from_config(model_config)
|
| 76 |
+
model_path = hf_hub_download(
|
| 77 |
+
repo_id="TencentARC/InstantMesh",
|
| 78 |
+
filename="instant_nerf_large.ckpt",
|
| 79 |
+
repo_type="model"
|
| 80 |
+
)
|
| 81 |
+
state_dict = torch.load(model_path, map_location='cpu')['state_dict']
|
| 82 |
+
state_dict = {k[14:]: v for k, v in state_dict.items()
|
| 83 |
+
if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
| 84 |
+
model.load_state_dict(state_dict, strict=True)
|
| 85 |
+
model = model.to(device)
|
| 86 |
+
model.eval()
|
| 87 |
+
|
| 88 |
+
return pipeline, model, infer_config
|
| 89 |
+
|
| 90 |
+
def process_images(input_images, prompt, steps=75, guidance_scale=7.5, pipeline=None):
|
| 91 |
+
"""Process input images and run refinement"""
|
| 92 |
+
device = pipeline.device
|
| 93 |
+
|
| 94 |
+
if isinstance(input_images, list):
|
| 95 |
+
if len(input_images) == 1:
|
| 96 |
+
# Check if this is a pre-arranged layout
|
| 97 |
+
img = Image.open(input_images[0].name).convert('RGB')
|
| 98 |
+
if img.size == (640, 960):
|
| 99 |
+
# This is already a layout, use it directly
|
| 100 |
+
input_image = img
|
| 101 |
+
else:
|
| 102 |
+
# Single view - need 6 copies
|
| 103 |
+
img = img.resize((320, 320))
|
| 104 |
+
img_array = np.array(img) / 255.0
|
| 105 |
+
images = [img_array] * 6
|
| 106 |
+
images = np.stack(images)
|
| 107 |
+
|
| 108 |
+
# Convert to tensor and create layout
|
| 109 |
+
images = torch.from_numpy(images).float()
|
| 110 |
+
images = images.permute(0, 3, 1, 2)
|
| 111 |
+
images = images.reshape(3, 2, 3, 320, 320)
|
| 112 |
+
images = images.permute(0, 2, 3, 1, 4)
|
| 113 |
+
images = images.reshape(3, 3, 320, 640)
|
| 114 |
+
images = images.reshape(1, 3, 960, 640)
|
| 115 |
+
|
| 116 |
+
# Convert back to PIL
|
| 117 |
+
images = images.permute(0, 2, 3, 1)[0]
|
| 118 |
+
images = (images.numpy() * 255).astype(np.uint8)
|
| 119 |
+
input_image = Image.fromarray(images)
|
| 120 |
+
else:
|
| 121 |
+
# Multiple individual views
|
| 122 |
+
images = []
|
| 123 |
+
for img_file in input_images:
|
| 124 |
+
img = Image.open(img_file.name).convert('RGB')
|
| 125 |
+
img = img.resize((320, 320))
|
| 126 |
+
img = np.array(img) / 255.0
|
| 127 |
+
images.append(img)
|
| 128 |
+
|
| 129 |
+
# Pad to 6 images if needed
|
| 130 |
+
while len(images) < 6:
|
| 131 |
+
images.append(np.zeros_like(images[0]))
|
| 132 |
+
images = np.stack(images[:6])
|
| 133 |
+
|
| 134 |
+
# Convert to tensor and create layout
|
| 135 |
+
images = torch.from_numpy(images).float()
|
| 136 |
+
images = images.permute(0, 3, 1, 2)
|
| 137 |
+
images = images.reshape(3, 2, 3, 320, 320)
|
| 138 |
+
images = images.permute(0, 2, 3, 1, 4)
|
| 139 |
+
images = images.reshape(3, 3, 320, 640)
|
| 140 |
+
images = images.reshape(1, 3, 960, 640)
|
| 141 |
+
|
| 142 |
+
# Convert back to PIL
|
| 143 |
+
images = images.permute(0, 2, 3, 1)[0]
|
| 144 |
+
images = (images.numpy() * 255).astype(np.uint8)
|
| 145 |
+
input_image = Image.fromarray(images)
|
| 146 |
+
else:
|
| 147 |
+
raise ValueError("Expected a list of images")
|
| 148 |
+
|
| 149 |
+
# Generate refined output
|
| 150 |
+
output = pipeline.refine(
|
| 151 |
+
input_image,
|
| 152 |
+
prompt=prompt,
|
| 153 |
+
num_inference_steps=int(steps),
|
| 154 |
+
guidance_scale=guidance_scale
|
| 155 |
+
).images[0]
|
| 156 |
+
|
| 157 |
+
return output, input_image
|
| 158 |
+
|
| 159 |
+
def create_mesh(refined_image, model, infer_config):
|
| 160 |
+
"""Generate mesh from refined image"""
|
| 161 |
+
# Convert PIL image to tensor
|
| 162 |
+
image = np.array(refined_image) / 255.0
|
| 163 |
+
image = torch.from_numpy(image).float().permute(2, 0, 1)
|
| 164 |
+
|
| 165 |
+
# Reshape to 6 views
|
| 166 |
+
image = image.reshape(3, 960, 640)
|
| 167 |
+
image = image.reshape(3, 3, 320, 640)
|
| 168 |
+
image = image.permute(1, 0, 2, 3)
|
| 169 |
+
image = image.reshape(3, 3, 320, 2, 320)
|
| 170 |
+
image = image.permute(0, 3, 1, 2, 4)
|
| 171 |
+
image = image.reshape(6, 3, 320, 320)
|
| 172 |
+
|
| 173 |
+
# Add batch dimension
|
| 174 |
+
image = image.unsqueeze(0)
|
| 175 |
+
|
| 176 |
+
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to("cuda")
|
| 177 |
+
image = image.to("cuda")
|
| 178 |
+
|
| 179 |
+
with torch.no_grad():
|
| 180 |
+
planes = model.forward_planes(image, input_cameras)
|
| 181 |
+
mesh_out = model.extract_mesh(planes, **infer_config)
|
| 182 |
+
vertices, faces, vertex_colors = mesh_out
|
| 183 |
+
|
| 184 |
+
return vertices, faces, vertex_colors
|
| 185 |
+
|
| 186 |
+
class ShapERenderer:
|
| 187 |
+
def __init__(self, device):
|
| 188 |
+
print("Loading Shap-E models...")
|
| 189 |
+
self.device = device
|
| 190 |
+
self.xm = load_model('transmitter', device=device)
|
| 191 |
+
self.model = load_model('text300M', device=device)
|
| 192 |
+
self.diffusion = diffusion_from_config(load_config('diffusion'))
|
| 193 |
+
print("Shap-E models loaded!")
|
| 194 |
+
|
| 195 |
+
def generate_views(self, prompt, guidance_scale=15.0, num_steps=64):
|
| 196 |
+
# Generate latents using the text-to-3D model
|
| 197 |
+
batch_size = 1
|
| 198 |
+
guidance_scale = float(guidance_scale)
|
| 199 |
+
latents = sample_latents(
|
| 200 |
+
batch_size=batch_size,
|
| 201 |
+
model=self.model,
|
| 202 |
+
diffusion=self.diffusion,
|
| 203 |
+
guidance_scale=guidance_scale,
|
| 204 |
+
model_kwargs=dict(texts=[prompt] * batch_size),
|
| 205 |
+
progress=True,
|
| 206 |
+
clip_denoised=True,
|
| 207 |
+
use_fp16=True,
|
| 208 |
+
use_karras=True,
|
| 209 |
+
karras_steps=num_steps,
|
| 210 |
+
sigma_min=1e-3,
|
| 211 |
+
sigma_max=160,
|
| 212 |
+
s_churn=0,
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# Render the 6 views we need with specific viewing angles
|
| 216 |
+
size = 320 # Size of each rendered image
|
| 217 |
+
images = []
|
| 218 |
+
|
| 219 |
+
# Define our 6 specific camera positions to match refine.py
|
| 220 |
+
azimuths = [30, 90, 150, 210, 270, 330]
|
| 221 |
+
elevations = [20, -10, 20, -10, 20, -10]
|
| 222 |
+
|
| 223 |
+
for i, (azimuth, elevation) in enumerate(zip(azimuths, elevations)):
|
| 224 |
+
cameras = create_custom_cameras(size, self.device, azimuths=[azimuth], elevations=[elevation], fov_degrees=30, distance=3.0)
|
| 225 |
+
rendered_image = decode_latent_images(
|
| 226 |
+
self.xm,
|
| 227 |
+
latents[0],
|
| 228 |
+
rendering_mode='stf',
|
| 229 |
+
cameras=cameras
|
| 230 |
+
)
|
| 231 |
+
images.append(rendered_image.detach().cpu().numpy())
|
| 232 |
+
|
| 233 |
+
# Convert images to uint8
|
| 234 |
+
images = [(image).astype(np.uint8) for image in images]
|
| 235 |
+
|
| 236 |
+
# Create 2x3 grid layout (640x960) instead of 3x2 (960x640)
|
| 237 |
+
layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
| 238 |
+
for i, img in enumerate(images):
|
| 239 |
+
row = i // 2 # Now 3 images per row
|
| 240 |
+
col = i % 2 # Now 3 images per row
|
| 241 |
+
layout[row*320:(row+1)*320, col*320:(col+1)*320] = img
|
| 242 |
+
|
| 243 |
+
return Image.fromarray(layout), images
|
| 244 |
+
|
| 245 |
+
class RefinerInterface:
|
| 246 |
+
def __init__(self):
|
| 247 |
+
print("Initializing InstantMesh models...")
|
| 248 |
+
self.pipeline, self.model, self.infer_config = load_models()
|
| 249 |
+
print("InstantMesh models loaded!")
|
| 250 |
+
|
| 251 |
+
def refine_model(self, input_image, prompt, steps=75, guidance_scale=7.5):
|
| 252 |
+
"""Main refinement function"""
|
| 253 |
+
# Process image and get refined output
|
| 254 |
+
input_image = Image.fromarray(input_image)
|
| 255 |
+
|
| 256 |
+
# Rotate the layout if needed (if we're getting a 640x960 layout but pipeline expects 960x640)
|
| 257 |
+
if input_image.width == 960 and input_image.height == 640:
|
| 258 |
+
# Transpose the image to get 960x640 layout
|
| 259 |
+
input_array = np.array(input_image)
|
| 260 |
+
new_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
| 261 |
+
|
| 262 |
+
# Rearrange from 2x3 to 3x2
|
| 263 |
+
for i in range(6):
|
| 264 |
+
src_row = i // 3
|
| 265 |
+
src_col = i % 3
|
| 266 |
+
dst_row = i // 2
|
| 267 |
+
dst_col = i % 2
|
| 268 |
+
|
| 269 |
+
new_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
| 270 |
+
input_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
| 271 |
+
|
| 272 |
+
input_image = Image.fromarray(new_layout)
|
| 273 |
+
|
| 274 |
+
# Process with the pipeline (expects 960x640)
|
| 275 |
+
refined_output_960x640 = self.pipeline.refine(
|
| 276 |
+
input_image,
|
| 277 |
+
prompt=prompt,
|
| 278 |
+
num_inference_steps=int(steps),
|
| 279 |
+
guidance_scale=guidance_scale
|
| 280 |
+
).images[0]
|
| 281 |
+
|
| 282 |
+
# Generate mesh using the 960x640 format
|
| 283 |
+
vertices, faces, vertex_colors = create_mesh(
|
| 284 |
+
refined_output_960x640,
|
| 285 |
+
self.model,
|
| 286 |
+
self.infer_config
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
# Save temporary mesh file
|
| 290 |
+
os.makedirs("temp", exist_ok=True)
|
| 291 |
+
temp_obj = os.path.join("temp", "refined_mesh.obj")
|
| 292 |
+
save_obj(vertices, faces, vertex_colors, temp_obj)
|
| 293 |
+
|
| 294 |
+
# Convert the output to 640x960 for display
|
| 295 |
+
refined_array = np.array(refined_output_960x640)
|
| 296 |
+
display_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
| 297 |
+
|
| 298 |
+
# Rearrange from 3x2 to 2x3
|
| 299 |
+
for i in range(6):
|
| 300 |
+
src_row = i // 2
|
| 301 |
+
src_col = i % 2
|
| 302 |
+
dst_row = i // 2
|
| 303 |
+
dst_col = i % 2
|
| 304 |
+
|
| 305 |
+
display_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
| 306 |
+
refined_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
| 307 |
+
|
| 308 |
+
refined_output_640x960 = Image.fromarray(display_layout)
|
| 309 |
+
|
| 310 |
+
return refined_output_640x960, temp_obj
|
| 311 |
+
|
| 312 |
+
def create_demo():
|
| 313 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 314 |
+
shap_e = ShapERenderer(device)
|
| 315 |
+
refiner = RefinerInterface()
|
| 316 |
+
|
| 317 |
+
with gr.Blocks() as demo:
|
| 318 |
+
gr.Markdown("# Shap-E to InstantMesh Pipeline")
|
| 319 |
+
|
| 320 |
+
# First row: Controls
|
| 321 |
+
with gr.Row():
|
| 322 |
+
with gr.Column():
|
| 323 |
+
# Shap-E inputs
|
| 324 |
+
shape_prompt = gr.Textbox(
|
| 325 |
+
label="Shap-E Prompt",
|
| 326 |
+
placeholder="Enter text to generate initial 3D model..."
|
| 327 |
+
)
|
| 328 |
+
shape_guidance = gr.Slider(
|
| 329 |
+
minimum=1,
|
| 330 |
+
maximum=30,
|
| 331 |
+
value=15.0,
|
| 332 |
+
label="Shap-E Guidance Scale"
|
| 333 |
+
)
|
| 334 |
+
shape_steps = gr.Slider(
|
| 335 |
+
minimum=16,
|
| 336 |
+
maximum=128,
|
| 337 |
+
value=64,
|
| 338 |
+
step=16,
|
| 339 |
+
label="Shap-E Steps"
|
| 340 |
+
)
|
| 341 |
+
generate_btn = gr.Button("Generate Views")
|
| 342 |
+
|
| 343 |
+
with gr.Column():
|
| 344 |
+
# Refinement inputs
|
| 345 |
+
refine_prompt = gr.Textbox(
|
| 346 |
+
label="Refinement Prompt",
|
| 347 |
+
placeholder="Enter prompt to guide refinement..."
|
| 348 |
+
)
|
| 349 |
+
refine_steps = gr.Slider(
|
| 350 |
+
minimum=30,
|
| 351 |
+
maximum=100,
|
| 352 |
+
value=75,
|
| 353 |
+
step=1,
|
| 354 |
+
label="Refinement Steps"
|
| 355 |
+
)
|
| 356 |
+
refine_guidance = gr.Slider(
|
| 357 |
+
minimum=1,
|
| 358 |
+
maximum=20,
|
| 359 |
+
value=7.5,
|
| 360 |
+
label="Refinement Guidance Scale"
|
| 361 |
+
)
|
| 362 |
+
refine_btn = gr.Button("Refine")
|
| 363 |
+
|
| 364 |
+
# Second row: Image panels side by side
|
| 365 |
+
with gr.Row():
|
| 366 |
+
# Outputs - Images side by side
|
| 367 |
+
shape_output = gr.Image(
|
| 368 |
+
label="Generated Views",
|
| 369 |
+
width=640, # Swapped dimensions
|
| 370 |
+
height=960 # Swapped dimensions
|
| 371 |
+
)
|
| 372 |
+
refined_output = gr.Image(
|
| 373 |
+
label="Refined Output",
|
| 374 |
+
width=640, # Swapped dimensions
|
| 375 |
+
height=960 # Swapped dimensions
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
# Third row: 3D mesh panel below
|
| 379 |
+
with gr.Row():
|
| 380 |
+
# 3D mesh centered
|
| 381 |
+
mesh_output = gr.Model3D(
|
| 382 |
+
label="3D Mesh",
|
| 383 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 384 |
+
width=1280, # Full width
|
| 385 |
+
height=600 # Taller for better visualization
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# Set up event handlers
|
| 389 |
+
def generate(prompt, guidance_scale, num_steps):
|
| 390 |
+
with torch.no_grad():
|
| 391 |
+
layout, _ = shap_e.generate_views(prompt, guidance_scale, num_steps)
|
| 392 |
+
return layout
|
| 393 |
+
|
| 394 |
+
def refine(input_image, prompt, steps, guidance_scale):
|
| 395 |
+
refined_img, mesh_path = refiner.refine_model(
|
| 396 |
+
input_image,
|
| 397 |
+
prompt,
|
| 398 |
+
steps,
|
| 399 |
+
guidance_scale
|
| 400 |
+
)
|
| 401 |
+
return refined_img, mesh_path
|
| 402 |
+
|
| 403 |
+
generate_btn.click(
|
| 404 |
+
fn=generate,
|
| 405 |
+
inputs=[shape_prompt, shape_guidance, shape_steps],
|
| 406 |
+
outputs=[shape_output]
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
refine_btn.click(
|
| 410 |
+
fn=refine,
|
| 411 |
+
inputs=[shape_output, refine_prompt, refine_steps, refine_guidance],
|
| 412 |
+
outputs=[refined_output, mesh_output]
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
return demo
|
| 416 |
+
|
| 417 |
+
if __name__ == "__main__":
|
| 418 |
+
demo = create_demo()
|
| 419 |
+
demo.launch(share=True)
|
app2.py
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from omegaconf import OmegaConf
|
| 8 |
+
from pytorch_lightning import seed_everything
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
""||||||||||||||||||||"from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
from shap_e.diffusion.sample import sample_latents
|
| 13 |
+
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
|
| 14 |
+
from shap_e.models.download import load_model, load_config
|
| 15 |
+
from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, create_custom_cameras
|
| 16 |
+
|
| 17 |
+
from src.utils.train_util import instantiate_from_config
|
| 18 |
+
from src.utils.camera_util import (
|
| 19 |
+
FOV_to_intrinsics,
|
| 20 |
+
get_zero123plus_input_cameras,
|
| 21 |
+
get_circular_camera_poses,
|
| 22 |
+
spherical_camera_pose
|
| 23 |
+
)
|
| 24 |
+
from src.utils.mesh_util import save_obj, save_glb
|
| 25 |
+
from src.utils.infer_util import remove_background, resize_foreground
|
| 26 |
+
|
| 27 |
+
def load_models():
|
| 28 |
+
"""Initialize and load all required models"""
|
| 29 |
+
config = OmegaConf.load('configs/instant-nerf-large-best.yaml')
|
| 30 |
+
model_config = config.model_config
|
| 31 |
+
infer_config = config.infer_config
|
| 32 |
+
|
| 33 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 34 |
+
|
| 35 |
+
# Load diffusion pipeline
|
| 36 |
+
print('Loading diffusion pipeline...')
|
| 37 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 38 |
+
"sudo-ai/zero123plus-v1.2",
|
| 39 |
+
custom_pipeline="zero123plus",
|
| 40 |
+
torch_dtype=torch.float16
|
| 41 |
+
)
|
| 42 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 43 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Modify UNet to handle 8 input channels instead of 4
|
| 47 |
+
in_channels = 8
|
| 48 |
+
out_channels = pipeline.unet.conv_in.out_channels
|
| 49 |
+
pipeline.unet.register_to_config(in_channels=in_channels)
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
new_conv_in = nn.Conv2d(
|
| 52 |
+
in_channels, out_channels, pipeline.unet.conv_in.kernel_size,
|
| 53 |
+
pipeline.unet.conv_in.stride, pipeline.unet.conv_in.padding
|
| 54 |
+
)
|
| 55 |
+
new_conv_in.weight.zero_()
|
| 56 |
+
new_conv_in.weight[:, :4, :, :].copy_(pipeline.unet.conv_in.weight)
|
| 57 |
+
pipeline.unet.conv_in = new_conv_in
|
| 58 |
+
|
| 59 |
+
# Load custom UNet
|
| 60 |
+
print('Loading custom UNet...')
|
| 61 |
+
unet_path = "best_21.ckpt"
|
| 62 |
+
state_dict = torch.load(unet_path, map_location='cpu')
|
| 63 |
+
|
| 64 |
+
# Process the state dict to match the model keys
|
| 65 |
+
if 'state_dict' in state_dict:
|
| 66 |
+
new_state_dict = {key.replace('unet.unet.', ''): value for key, value in state_dict['state_dict'].items()}
|
| 67 |
+
pipeline.unet.load_state_dict(new_state_dict, strict=False)
|
| 68 |
+
else:
|
| 69 |
+
pipeline.unet.load_state_dict(state_dict, strict=False)
|
| 70 |
+
|
| 71 |
+
pipeline = pipeline.to(device).to(torch_dtype=torch.float16)
|
| 72 |
+
|
| 73 |
+
# Load reconstruction model
|
| 74 |
+
print('Loading reconstruction model...')
|
| 75 |
+
model = instantiate_from_config(model_config)
|
| 76 |
+
model_path = hf_hub_download(
|
| 77 |
+
repo_id="TencentARC/InstantMesh",
|
| 78 |
+
filename="instant_nerf_large.ckpt",
|
| 79 |
+
repo_type="model"
|
| 80 |
+
)
|
| 81 |
+
state_dict = torch.load(model_path, map_location='cpu')['state_dict']
|
| 82 |
+
state_dict = {k[14:]: v for k, v in state_dict.items()
|
| 83 |
+
if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
| 84 |
+
model.load_state_dict(state_dict, strict=True)
|
| 85 |
+
model = model.to(device)
|
| 86 |
+
model.eval()
|
| 87 |
+
|
| 88 |
+
return pipeline, model, infer_config
|
| 89 |
+
|
| 90 |
+
def process_images(input_images, prompt, steps=75, guidance_scale=7.5, pipeline=None):
|
| 91 |
+
"""Process input images and run refinement"""
|
| 92 |
+
device = pipeline.device
|
| 93 |
+
|
| 94 |
+
if isinstance(input_images, list):
|
| 95 |
+
if len(input_images) == 1:
|
| 96 |
+
# Check if this is a pre-arranged layout
|
| 97 |
+
img = Image.open(input_images[0].name).convert('RGB')
|
| 98 |
+
if img.size == (640, 960):
|
| 99 |
+
# This is already a layout, use it directly
|
| 100 |
+
input_image = img
|
| 101 |
+
else:
|
| 102 |
+
# Single view - need 6 copies
|
| 103 |
+
img = img.resize((320, 320))
|
| 104 |
+
img_array = np.array(img) / 255.0
|
| 105 |
+
images = [img_array] * 6
|
| 106 |
+
images = np.stack(images)
|
| 107 |
+
|
| 108 |
+
# Convert to tensor and create layout
|
| 109 |
+
images = torch.from_numpy(images).float()
|
| 110 |
+
images = images.permute(0, 3, 1, 2)
|
| 111 |
+
images = images.reshape(3, 2, 3, 320, 320)
|
| 112 |
+
images = images.permute(0, 2, 3, 1, 4)
|
| 113 |
+
images = images.reshape(3, 3, 320, 640)
|
| 114 |
+
images = images.reshape(1, 3, 960, 640)
|
| 115 |
+
|
| 116 |
+
# Convert back to PIL
|
| 117 |
+
images = images.permute(0, 2, 3, 1)[0]
|
| 118 |
+
images = (images.numpy() * 255).astype(np.uint8)
|
| 119 |
+
input_image = Image.fromarray(images)
|
| 120 |
+
else:
|
| 121 |
+
# Multiple individual views
|
| 122 |
+
images = []
|
| 123 |
+
for img_file in input_images:
|
| 124 |
+
img = Image.open(img_file.name).convert('RGB')
|
| 125 |
+
img = img.resize((320, 320))
|
| 126 |
+
img = np.array(img) / 255.0
|
| 127 |
+
images.append(img)
|
| 128 |
+
|
| 129 |
+
# Pad to 6 images if needed
|
| 130 |
+
while len(images) < 6:
|
| 131 |
+
images.append(np.zeros_like(images[0]))
|
| 132 |
+
images = np.stack(images[:6])
|
| 133 |
+
|
| 134 |
+
# Convert to tensor and create layout
|
| 135 |
+
images = torch.from_numpy(images).float()
|
| 136 |
+
images = images.permute(0, 3, 1, 2)
|
| 137 |
+
images = images.reshape(3, 2, 3, 320, 320)
|
| 138 |
+
images = images.permute(0, 2, 3, 1, 4)
|
| 139 |
+
images = images.reshape(3, 3, 320, 640)
|
| 140 |
+
images = images.reshape(1, 3, 960, 640)
|
| 141 |
+
|
| 142 |
+
# Convert back to PIL
|
| 143 |
+
images = images.permute(0, 2, 3, 1)[0]
|
| 144 |
+
images = (images.numpy() * 255).astype(np.uint8)
|
| 145 |
+
input_image = Image.fromarray(images)
|
| 146 |
+
else:
|
| 147 |
+
raise ValueError("Expected a list of images")
|
| 148 |
+
|
| 149 |
+
# Generate refined output
|
| 150 |
+
output = pipeline.refine(
|
| 151 |
+
input_image,
|
| 152 |
+
prompt=prompt,
|
| 153 |
+
num_inference_steps=int(steps),
|
| 154 |
+
guidance_scale=guidance_scale
|
| 155 |
+
).images[0]
|
| 156 |
+
|
| 157 |
+
return output, input_image
|
| 158 |
+
|
| 159 |
+
def create_mesh(refined_image, model, infer_config):
|
| 160 |
+
"""Generate mesh from refined image"""
|
| 161 |
+
# Convert PIL image to tensor
|
| 162 |
+
image = np.array(refined_image) / 255.0
|
| 163 |
+
image = torch.from_numpy(image).float().permute(2, 0, 1)
|
| 164 |
+
|
| 165 |
+
# Reshape to 6 views
|
| 166 |
+
image = image.reshape(3, 960, 640)
|
| 167 |
+
image = image.reshape(3, 3, 320, 640)
|
| 168 |
+
image = image.permute(1, 0, 2, 3)
|
| 169 |
+
image = image.reshape(3, 3, 320, 2, 320)
|
| 170 |
+
image = image.permute(0, 3, 1, 2, 4)
|
| 171 |
+
image = image.reshape(6, 3, 320, 320)
|
| 172 |
+
|
| 173 |
+
# Add batch dimension
|
| 174 |
+
image = image.unsqueeze(0)
|
| 175 |
+
|
| 176 |
+
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to("cuda")
|
| 177 |
+
image = image.to("cuda")
|
| 178 |
+
|
| 179 |
+
with torch.no_grad():
|
| 180 |
+
planes = model.forward_planes(image, input_cameras)
|
| 181 |
+
mesh_out = model.extract_mesh(planes, **infer_config)
|
| 182 |
+
vertices, faces, vertex_colors = mesh_out
|
| 183 |
+
|
| 184 |
+
return vertices, faces, vertex_colors
|
| 185 |
+
|
| 186 |
+
class ShapERenderer:
|
| 187 |
+
def __init__(self, device):
|
| 188 |
+
print("Loading Shap-E models...")
|
| 189 |
+
self.device = device
|
| 190 |
+
self.xm = load_model('transmitter', device=device)
|
| 191 |
+
self.model = load_model('text300M', device=device)
|
| 192 |
+
self.diffusion = diffusion_from_config(load_config('diffusion'))
|
| 193 |
+
print("Shap-E models loaded!")
|
| 194 |
+
|
| 195 |
+
def generate_views(self, prompt, guidance_scale=15.0, num_steps=64):
|
| 196 |
+
# Generate latents using the text-to-3D model
|
| 197 |
+
batch_size = 1
|
| 198 |
+
guidance_scale = float(guidance_scale)
|
| 199 |
+
latents = sample_latents(
|
| 200 |
+
batch_size=batch_size,
|
| 201 |
+
model=self.model,
|
| 202 |
+
diffusion=self.diffusion,
|
| 203 |
+
guidance_scale=guidance_scale,
|
| 204 |
+
model_kwargs=dict(texts=[prompt] * batch_size),
|
| 205 |
+
progress=True,
|
| 206 |
+
clip_denoised=True,
|
| 207 |
+
use_fp16=True,
|
| 208 |
+
use_karras=True,
|
| 209 |
+
karras_steps=num_steps,
|
| 210 |
+
sigma_min=1e-3,
|
| 211 |
+
sigma_max=160,
|
| 212 |
+
s_churn=0,
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# Render the 6 views we need with specific viewing angles
|
| 216 |
+
size = 320 # Size of each rendered image
|
| 217 |
+
images = []
|
| 218 |
+
|
| 219 |
+
# Define our 6 specific camera positions to match refine.py
|
| 220 |
+
azimuths = [30, 90, 150, 210, 270, 330]
|
| 221 |
+
elevations = [20, -10, 20, -10, 20, -10]
|
| 222 |
+
|
| 223 |
+
for i, (azimuth, elevation) in enumerate(zip(azimuths, elevations)):
|
| 224 |
+
cameras = create_custom_cameras(size, self.device, azimuths=[azimuth], elevations=[elevation], fov_degrees=30, distance=3.0)
|
| 225 |
+
rendered_image = decode_latent_images(
|
| 226 |
+
self.xm,
|
| 227 |
+
latents[0],
|
| 228 |
+
rendering_mode='stf',
|
| 229 |
+
cameras=cameras
|
| 230 |
+
)
|
| 231 |
+
images.append(rendered_image.detach().cpu().numpy())
|
| 232 |
+
|
| 233 |
+
# Convert images to uint8
|
| 234 |
+
images = [(image).astype(np.uint8) for image in images]
|
| 235 |
+
|
| 236 |
+
# Create 2x3 grid layout (640x960) instead of 3x2 (960x640)
|
| 237 |
+
layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
| 238 |
+
for i, img in enumerate(images):
|
| 239 |
+
row = i // 2 # Now 3 images per row
|
| 240 |
+
col = i % 2 # Now 3 images per row
|
| 241 |
+
layout[row*320:(row+1)*320, col*320:(col+1)*320] = img
|
| 242 |
+
|
| 243 |
+
return Image.fromarray(layout), images
|
| 244 |
+
|
| 245 |
+
class RefinerInterface:
|
| 246 |
+
def __init__(self):
|
| 247 |
+
print("Initializing InstantMesh models...")
|
| 248 |
+
self.pipeline, self.model, self.infer_config = load_models()
|
| 249 |
+
print("InstantMesh models loaded!")
|
| 250 |
+
|
| 251 |
+
def refine_model(self, input_image, prompt, steps=75, guidance_scale=7.5):
|
| 252 |
+
"""Main refinement function"""
|
| 253 |
+
# Process image and get refined output
|
| 254 |
+
input_image = Image.fromarray(input_image)
|
| 255 |
+
|
| 256 |
+
# Rotate the layout if needed (if we're getting a 640x960 layout but pipeline expects 960x640)
|
| 257 |
+
if input_image.width == 960 and input_image.height == 640:
|
| 258 |
+
# Transpose the image to get 960x640 layout
|
| 259 |
+
input_array = np.array(input_image)
|
| 260 |
+
new_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
| 261 |
+
|
| 262 |
+
# Rearrange from 2x3 to 3x2
|
| 263 |
+
for i in range(6):
|
| 264 |
+
src_row = i // 3
|
| 265 |
+
src_col = i % 3
|
| 266 |
+
dst_row = i // 2
|
| 267 |
+
dst_col = i % 2
|
| 268 |
+
|
| 269 |
+
new_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
| 270 |
+
input_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
| 271 |
+
|
| 272 |
+
input_image = Image.fromarray(new_layout)
|
| 273 |
+
|
| 274 |
+
# Process with the pipeline (expects 960x640)
|
| 275 |
+
refined_output_960x640 = self.pipeline.refine(
|
| 276 |
+
input_image,
|
| 277 |
+
prompt=prompt,
|
| 278 |
+
num_inference_steps=int(steps),
|
| 279 |
+
guidance_scale=guidance_scale
|
| 280 |
+
).images[0]
|
| 281 |
+
|
| 282 |
+
# Generate mesh using the 960x640 format
|
| 283 |
+
vertices, faces, vertex_colors = create_mesh(
|
| 284 |
+
refined_output_960x640,
|
| 285 |
+
self.model,
|
| 286 |
+
self.infer_config
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
# Save temporary mesh file
|
| 290 |
+
os.makedirs("temp", exist_ok=True)
|
| 291 |
+
temp_obj = os.path.join("temp", "refined_mesh.obj")
|
| 292 |
+
save_obj(vertices, faces, vertex_colors, temp_obj)
|
| 293 |
+
|
| 294 |
+
# Convert the output to 640x960 for display
|
| 295 |
+
refined_array = np.array(refined_output_960x640)
|
| 296 |
+
display_layout = np.zeros((960, 640, 3), dtype=np.uint8)
|
| 297 |
+
|
| 298 |
+
# Rearrange from 3x2 to 2x3
|
| 299 |
+
for i in range(6):
|
| 300 |
+
src_row = i // 2
|
| 301 |
+
src_col = i % 2
|
| 302 |
+
dst_row = i // 2
|
| 303 |
+
dst_col = i % 2
|
| 304 |
+
|
| 305 |
+
display_layout[dst_row*320:(dst_row+1)*320, dst_col*320:(dst_col+1)*320] = \
|
| 306 |
+
refined_array[src_row*320:(src_row+1)*320, src_col*320:(src_col+1)*320]
|
| 307 |
+
|
| 308 |
+
refined_output_640x960 = Image.fromarray(display_layout)
|
| 309 |
+
|
| 310 |
+
return refined_output_640x960, temp_obj
|
| 311 |
+
|
| 312 |
+
def create_demo():
|
| 313 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 314 |
+
shap_e = ShapERenderer(device)
|
| 315 |
+
refiner = RefinerInterface()
|
| 316 |
+
|
| 317 |
+
with gr.Blocks() as demo:
|
| 318 |
+
gr.Markdown("# Shap-E to InstantMesh Pipeline")
|
| 319 |
+
|
| 320 |
+
# First row: Controls
|
| 321 |
+
with gr.Row():
|
| 322 |
+
with gr.Column():
|
| 323 |
+
# Shap-E inputs
|
| 324 |
+
shape_prompt = gr.Textbox(
|
| 325 |
+
label="Shap-E Prompt",
|
| 326 |
+
placeholder="Enter text to generate initial 3D model..."
|
| 327 |
+
)
|
| 328 |
+
shape_guidance = gr.Slider(
|
| 329 |
+
minimum=1,
|
| 330 |
+
maximum=30,
|
| 331 |
+
value=15.0,
|
| 332 |
+
label="Shap-E Guidance Scale"
|
| 333 |
+
)
|
| 334 |
+
shape_steps = gr.Slider(
|
| 335 |
+
minimum=16,
|
| 336 |
+
maximum=128,
|
| 337 |
+
value=64,
|
| 338 |
+
step=16,
|
| 339 |
+
label="Shap-E Steps"
|
| 340 |
+
)
|
| 341 |
+
generate_btn = gr.Button("Generate Views")
|
| 342 |
+
|
| 343 |
+
with gr.Column():
|
| 344 |
+
# Refinement inputs
|
| 345 |
+
refine_prompt = gr.Textbox(
|
| 346 |
+
label="Refinement Prompt",
|
| 347 |
+
placeholder="Enter prompt to guide refinement..."
|
| 348 |
+
)
|
| 349 |
+
refine_steps = gr.Slider(
|
| 350 |
+
minimum=30,
|
| 351 |
+
maximum=100,
|
| 352 |
+
value=75,
|
| 353 |
+
step=1,
|
| 354 |
+
label="Refinement Steps"
|
| 355 |
+
)
|
| 356 |
+
refine_guidance = gr.Slider(
|
| 357 |
+
minimum=1,
|
| 358 |
+
maximum=20,
|
| 359 |
+
value=7.5,
|
| 360 |
+
label="Refinement Guidance Scale"
|
| 361 |
+
)
|
| 362 |
+
refine_btn = gr.Button("Refine")
|
| 363 |
+
|
| 364 |
+
# Second row: Image panels side by side
|
| 365 |
+
with gr.Row():
|
| 366 |
+
# Outputs - Images side by side
|
| 367 |
+
shape_output = gr.Image(
|
| 368 |
+
label="Generated Views",
|
| 369 |
+
width=640, # Swapped dimensions
|
| 370 |
+
height=960 # Swapped dimensions
|
| 371 |
+
)
|
| 372 |
+
refined_output = gr.Image(
|
| 373 |
+
label="Refined Output",
|
| 374 |
+
width=640, # Swapped dimensions
|
| 375 |
+
height=960 # Swapped dimensions
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
# Third row: 3D mesh panel below
|
| 379 |
+
with gr.Row():
|
| 380 |
+
# 3D mesh centered
|
| 381 |
+
mesh_output = gr.Model3D(
|
| 382 |
+
label="3D Mesh",
|
| 383 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 384 |
+
width=1280, # Full width
|
| 385 |
+
height=600 # Taller for better visualization
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# Set up event handlers
|
| 389 |
+
def generate(prompt, guidance_scale, num_steps):
|
| 390 |
+
with torch.no_grad():
|
| 391 |
+
layout, _ = shap_e.generate_views(prompt, guidance_scale, num_steps)
|
| 392 |
+
return layout
|
| 393 |
+
|
| 394 |
+
def refine(input_image, prompt, steps, guidance_scale):
|
| 395 |
+
refined_img, mesh_path = refiner.refine_model(
|
| 396 |
+
input_image,
|
| 397 |
+
prompt,
|
| 398 |
+
steps,
|
| 399 |
+
guidance_scale
|
| 400 |
+
)
|
| 401 |
+
return refined_img, mesh_path
|
| 402 |
+
|
| 403 |
+
generate_btn.click(
|
| 404 |
+
fn=generate,
|
| 405 |
+
inputs=[shape_prompt, shape_guidance, shape_steps],
|
| 406 |
+
outputs=[shape_output]
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
refine_btn.click(
|
| 410 |
+
fn=refine,
|
| 411 |
+
inputs=[shape_output, refine_prompt, refine_steps, refine_guidance],
|
| 412 |
+
outputs=[refined_output, mesh_output]
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
return demo
|
| 416 |
+
|
| 417 |
+
if __name__ == "__main__":
|
| 418 |
+
demo = create_demo()
|
| 419 |
+
demo.launch(share=True)
|